精英家教网 > 高中数学 > 题目详情

(本小题满分12分) 已知椭圆的离心率,A,B
分别为椭圆的长轴和短轴的端点,为AB的中点,O为坐标原点,且.
(1)求椭圆的方程;
(2)过(-1,0)的直线交椭圆于P,Q两点,求△POQ面积最大时直线的方程.

(1) (2) ,直线方程为:

解析试题分析:(1)

(2)设直线方程为







直线方程为:------12分
考点:椭圆的标准方程及直线和椭圆的位置关系,函数求最值
点评:第二问中将三角形面积分成两部分使其底边为定值,简化了计算过程;求面积最值转化成求x有范围的二次函数最值中x的范围是容易忽略的地方

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知双曲线的中心在原点,对称轴为坐标轴,一条渐近线方程为,右焦点,双曲线的实轴为为双曲线上一点(不同于),直线分别与直线交于两点
(1)求双曲线的方程;
(2)是否为定值,若为定值,求出该值;若不为定值,说明理由。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分12分)设椭圆的左、右焦点分别为,上顶点为,过点垂直的直线交轴负半轴于点,且
(1)求椭圆的离心率; (2)若过三点的圆恰好与直线相切,
求椭圆的方程;

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知双曲线的离心率,过的直线到原点的距离是 
(1)求双曲线的方程;
(2)已知直线交双曲线于不同的点C,D且C,D都在以B为圆心的圆上,求k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
已知直线经过抛物线的焦点,且与抛物线交于两点,点为坐标原点.

(Ⅰ)证明:为钝角.
(Ⅱ)若的面积为,求直线的方程;

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知圆过椭圆的两焦点,与椭圆有且仅有两个与圆相切 ,与椭圆相交于两点记
(1)求椭圆的方程
(2)求的取值范围;
(3)求的面积S的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分13分)已知椭圆的中心在原点,焦点轴上,经过点,且抛物线的焦点为.
(1) 求椭圆的方程;
(2) 垂直于的直线与椭圆交于,两点,当以为直径的圆轴相切时,求直线的方程和圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

求与椭圆有共同焦点,且过点(0,2)的双曲线方程,并且求出这条双曲线的实轴长、焦距、离心率以及渐近线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(10分)已知抛物线的顶点在原点,它的准线过双曲线的一个焦点,并与双曲线的实轴垂直,已知抛物线与双曲线的交点为.
(1)求抛物线的标准方程;    (2)求双曲线的标准方程.

查看答案和解析>>

同步练习册答案