分析 根据题意,利用几何概率公式写出对应的概率是角度的比值,结合三角函数的公式即可求出BC的长.
解答 解:因为事件“射线AP与线段BC有公共点”发生的概率为$\frac{1}{3}$,
即P=$\frac{∠BAC}{∠BAD}$=$\frac{1}{3}$,
因为∠BAD=90°,
所以∠BAC=30°,
所以$\frac{BC}{AB}=tan{30^0}=\frac{{\sqrt{3}}}{3}$;
又因为AB=3,
所以BC=3×$\frac{\sqrt{3}}{3}$=$\sqrt{3}$.
故答案为:$\sqrt{3}$.
点评 本题考查了几何概型的概率计算问题,也考查了三角函数公式的应用问题,是基础题目.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (1,+∞) | B. | [1,+∞) | C. | (2,+∞) | D. | [2,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (7,10,11) | B. | (-2,-1,0) | C. | $(\frac{5}{2},\frac{7}{2},\frac{9}{2})$ | D. | (7,8,9) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | sn=2n2+n | B. | an=-n2-3n+1 | C. | an=$\frac{1}{{2}^{n}}$ | D. | ${s_n}=-2{n^2}+n$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\overrightarrow a$•$\overrightarrow b$=0⇒$\overrightarrow a$=$\overrightarrow 0$或$\overrightarrow b$=$\overrightarrow 0$ | B. | $\overrightarrow a$∥$\overrightarrow b$⇒$\overrightarrow a$在$\overrightarrow b$方向上的投影为|${\overrightarrow a}$| | ||
| C. | $\overrightarrow a$⊥$\overrightarrow b$⇒$\overrightarrow a$•$\overrightarrow b$=($\overrightarrow a$•$\overrightarrow b$)2 | D. | $\overrightarrow a$•$\overrightarrow c$=$\overrightarrow b$•$\overrightarrow c$⇒$\overrightarrow a$=$\overrightarrow b$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com