精英家教网 > 高中数学 > 题目详情
设Sn为数列{an}的前n项和,已知2an-1=Sn,n∈N*
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)求数列{nan}的前n项和Tn
考点:数列的求和
专题:等差数列与等比数列
分析:(Ⅰ)利用an=
S1,n=1
Sn-Sn-1,n≥2
,能求出数列{an}的通项公式.
(Ⅱ)由题意知nan=n•2n-1,利用错位相减法能求出数列{nan}的前n项和Tn
解答: 解:(Ⅰ)∵2an-1=Sn,n∈N*
∴当n=1时,2a1-1=a1,解得a1=1,
当n≥2时,an=Sn-Sn-1=2an-2an-1
∴an=2an-1
∴{an}是首项为a1=1,公比为q=2的等比数列,
an=2n-1,n∈N*
(Ⅱ)∵an=2n-1
∴nan=n•2n-1
∴Tn=1•20+2•2+3•22+…+n•2n-1,①
2Tn=1•2+2•22+3•33+…+n•2n,②
①-②,得:-Tn=1+2+22+23+…+2n-1-n•2n
=
1×(1-2n)
1-2
-n•2n
=2n-1-n•2n
Tn=(n-1)•2n+1
点评:本题考查数列的通项公式和前n项和的求法,是中档题,解题时要认真审题,注意错位相减法的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设等差数列{an}的前n项和为Sn,且a1=2,a3=6.
(1)求数列{an}的通项公式;
(2)设数列{
1
Sn
}
的前n项和为Tn,求T2013的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设F1,F2分别是椭圆D:
x2
a2
+
y2
b2
=1(a>b>0)的左、右焦点,过F2作倾斜角为
π
3
的直线交椭圆D于A,B两点,F1到直线AB的距离为3,连接椭圆D的四个顶点得到的菱形面积为4.
(Ⅰ)求椭圆D的方程;
(Ⅱ)已知点M(-1,0),设E是椭圆D上的一点,过E、M两点的直线l交y轴于点C,若
CE
EM
,求λ的取值范围;
(Ⅲ)作直线l1与椭圆D交于不同的两点P,Q,其中P点的坐标为(-2,0),若点N(0,t)是线段PQ垂直平分线上一点,且满足
NP
NQ
=4,求实数t的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}满足a1=x,a2=3x,Sn+1+Sn+Sn-1=3n2+2(n≥2,n∈N*),Sn是数列{an}的前n项和.
(1)若数列{an}为等差数列.
(ⅰ)求数列的通项an
(ⅱ)若数列{bn}满足bn=2an,数列{cn}满足cn=t2bn+2-tbn+1-bn,试比较数列{bn}前n项和Bn与{cn}前n项和Cn的大小;
(2)若对任意n∈N*,an<an+1恒成立,求实数x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知平面α∩β=l,点A∈α,点B∈α,点C属于β,且A∉l,B∉l,直线AB与l不平行,那么平面ABC与平面β的交线与l有什么关系?证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ax-2-2(a>0且a≠1)的图象恒过定点A(m,n),则不等式组
mx+ny+2≥0
8x-y-4≤0
x≥0,y≥0
所表示的平面区域的面积是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

某校同学设计一个如图所示的“蝴蝶形图案(阴影区域)”,其中AC、BD是过抛物线Γ焦点F的两条弦,且其焦点F(0,1),
AC
BD
=0
,点E为y轴上一点,记∠EFA=α,其中α为锐角.
①求抛物线Γ方程;
②如果使“蝴蝶形图案”的面积最小,求α的大小?

查看答案和解析>>

科目:高中数学 来源: 题型:

在极坐标系中,过点(3,
π
3
)且垂直于极轴的直线方程的极坐标方程是
 
(请选择正确标号填空).(1)ρ=
3
2
sinθ;(2)ρ=
3
2
cosθ
;(3)ρsinθ=
3
2
;(4)ρcosθ=
3
2

查看答案和解析>>

科目:高中数学 来源: 题型:

设a>1.若曲线y=
1
x
与直线y=0,x=1,x=a,所围成封闭图形的面积为2,则a=
 

查看答案和解析>>

同步练习册答案