精英家教网 > 高中数学 > 题目详情
某校同学设计一个如图所示的“蝴蝶形图案(阴影区域)”,其中AC、BD是过抛物线Γ焦点F的两条弦,且其焦点F(0,1),
AC
BD
=0
,点E为y轴上一点,记∠EFA=α,其中α为锐角.
①求抛物线Γ方程;
②如果使“蝴蝶形图案”的面积最小,求α的大小?
考点:直线与圆锥曲线的综合问题
专题:圆锥曲线的定义、性质与方程
分析:①直接由抛物线的焦点坐标得到抛物线的标准方程;
②由题意结合图形,把A、B、C、D四点的坐标分别用|AF|、|BF|、|CF|、|DF|和α表示,代入抛物线方程后最终求得|AF|、|BF|、|CF|、|DF|,代入两个三角形面积后作和,换元后利用配方法求面积的最小值.
解答: 解:①由抛物线Γ焦点F(0,1)得,抛物线Γ方程为x2=4y;
②设AF=m,则点A(-msinα,mcosα+1),
∴(-msinα)2=4(1+mcosα),即m2sin2α-4mcosα-4=0.

解得:m=
4cosα±4
2sin2α
=
2(cosα±1)
sin2α

∵m>0,∴|AF|=
2(cosα+1)
sin2α

同理:|BF|=
2(1-sinα)
cos2α
|DF|=
2(1+sinα)
cos2α

|CF|=
2(1-cosα)
sin2α

“蝴蝶形图案”的面积
S=S△AFB+S△CFD=
1
2
AF•BF+
1
2
CF•DF
=
4-4sinαcosα
(sinαcosα)2

t=sinαcosα,t∈(0,
1
2
]
,∴
1
t
∈[2,+∞)

S=4•
1-t
t2
=4(
1
t
-
1
2
)2-1
,∴
1
t
=2
时,即α=
π
4
时“蝴蝶形图案”的面积最小为8.
点评:本题考查抛物线方程的求法,考查直线与抛物线的位置关系的应用,关键是把A、B、C、D四点的坐标分别用
|AF|、|BF|、|CF|、|DF|和α表示,代入抛物线方程后最终求得|AF|、|BF|、|CF|、|DF|,考查了学生的运算推理的能力和计算能力,是高考试卷中的压轴题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图1,在直角梯形ABCD中,AD∥BC,∠ADC=90°,BA=BC.把△BAC沿AC折起到△PAC的位置,使得P点在平面ADC上的正投影O恰好落在线段AC上,如图2所示,点E、F分别为棱PC、CD的中点.
(1)求证:平面OEF∥平面APD;
(2)求证:CD⊥平面POF;
(3)若AD=3,CD=4,AB=5,求三棱锥E-CFO的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}中,a1=5,an=2an-1+2n-1(n∈N*且n≥2).
(1)求a2、a3的值;
(2)若数列{
an
2n
}为等差数列,求实数λ的值;
(3)求数列{an}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

设Sn为数列{an}的前n项和,已知2an-1=Sn,n∈N*
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)求数列{nan}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

设计一个算法,根据输入x的值,计算y=
3x-1x≥1
1-3xx<1
的值,写其程序并画出其流程图.

查看答案和解析>>

科目:高中数学 来源: 题型:

在实数范围内,不等式|2x-1|-|x-3|≤5的解集为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系上,设不等式组
x>0
y>0
y≤-n(x-3)
所表示的平面区域为Dn,记Dn内的整点(即横坐标和纵坐标均为整数的点)的个数为an(n∈N*).则a1=
 
,经推理可得到an=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

平面直角坐标系中,已知A(1,O),B(0,1),C(-1,c)(c>0),且|OC|=2,若
OC
OA
OB

(λ、μ是实数).(1)λ=
 
;(2)μ=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

给出下列命题:①若函数f(x)=
(3a-1)x+4a,x<1
logax,x≥1
在(-∞,+∞)上是减函数,则a的取值范围是(0,
1
3
)
;②若函数f(x)满足f(x+1)=f(3-x),则f(x)的图象关于直线x=2对称;③函数y=f(x+1)与函数y=f(3-x)的图象关于直线x=2对称;④若函数f(x+2013)=x2-2x-1(x∈R),则f(x)的最小值为-2.其中正确命题的序号有
 
(把所有正确命题的序号都写上).

查看答案和解析>>

同步练习册答案