精英家教网 > 高中数学 > 题目详情
12.设双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的右焦点为F,过点F作与x轴垂直的直线交两渐近线于A,B两点,且与双曲线在第一象限的交点为P,设O为坐标原点,若$\overrightarrow{OP}$=λ$\overrightarrow{OA}$+μ$\overrightarrow{OB}$,λμ=$\frac{4}{25}$(λ、μ∈R),则双曲线的离心率e的值是$\frac{5}{4}$.

分析 由方程可得渐近线,可得A,B,P的坐标,由已知向量式可得λ+μ=1,λ-μ=$\frac{b}{c}$,解之可得λμ的值,由λμ=$\frac{4}{25}$可得a,c的关系,由离心率的定义可得.

解答 解:双曲线的渐近线为:y=±$\frac{b}{a}$x,
设焦点F(c,0),
则A(c,$\frac{bc}{a}$),B(c,-$\frac{bc}{a}$),P(c,$\frac{{b}^{2}}{a}$),
∵$\overrightarrow{OP}$=λ$\overrightarrow{OA}$+μ$\overrightarrow{OB}$,
∴(c,$\frac{{b}^{2}}{a}$)=((λ+μ)c,(λ-μ)$\frac{bc}{a}$),
∴λ+μ=1,λ-μ=$\frac{b}{c}$,解得λ=$\frac{c+b}{2c}$,μ=$\frac{c-b}{2c}$,
又由λμ=$\frac{4}{25}$,得得$\frac{c+b}{2c}$•$\frac{c-b}{2c}$=$\frac{4}{25}$,
解得$\frac{{a}^{2}}{{c}^{2}}$=$\frac{16}{25}$,
∴e=$\frac{c}{a}$=$\frac{5}{4}$.
故答案为:$\frac{5}{4}$.

点评 本题考查双曲线的简单性质,涉及双曲线的渐近线方程和离心率的求解,考查运算能力,属中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.已知椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的离心率为e=$\frac{{\sqrt{2}}}{2}$,点P(1,$\frac{{\sqrt{2}}}{2}$)在该椭圆上.
(1)求椭圆的标准方程;
(2)若直线l与圆O:x2+y2=1相切,并椭圆交于不同的两点A、B,求△AOB面积S的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.若数据a1,a2,a3,a5,a6这6个数据的平均数为$\overline{x}$,方差为0.20,则数据a1,a2,a3,a5,a6,$\overline{x}$这7个数据的方差是$\frac{6}{35}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知函数f(x)是R上的奇函数,当x>0时为减函数,且f(2)=0,则{x|f(x-2)>0}=(  )
A.{x|0<x<2或x>4}B.{x|x<0或x>4}C.{x|0<x<2或x>2}D.{x|0<x<2或2<x<4}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知$\frac{tan(α-γ)}{tanα}$+$\frac{si{n}^{2}β}{si{n}^{2}α}$=1,求证:tan2β=tanαtanγ.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=(ax+b)lnx-bx+3在(1,f(1))处的切线方程为y=2.
(1)求a,b的值;
(2)求函数f(x)的极值.
(3)若g(x)=f(x)+kx在(1,3)是单调函数,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.曲线y=ex在点A(0,1)处的切线斜率为1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知数列n∈N*,n≥2的前n项和Sn=n2+2n-1(n∈N*),则a1=2;数列{an}的通项公式为an=$\left\{\begin{array}{l}2,n=1\\ 2n+1,n≥2\end{array}\right.$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.如图,椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率是$\frac{\sqrt{3}}{2}$,且过点($\sqrt{3}$,$\frac{1}{2}$).设点A1,B1分别是椭圆的右顶点和上顶点,如图所示过 点A1,B1引椭圆C的两条弦A1E、B1F.
(1)求椭圆C的方程;
(2)若直线A1E与B1F的斜率是互为相反数.
①求直线EF的斜率k0 ②设直线EF的方程为y=k0x+b(-1≤b≤1)设△A1EF、△B1EF的面积分别为S1和S2,求S1+S2的取值范围.

查看答案和解析>>

同步练习册答案