精英家教网 > 高中数学 > 题目详情
15.在△ABC中,内角A,B,C所对的边分别a,b,c,其中a=2,A=60°,则b-2c的取值范围为(-4,2).

分析 由正弦定理用sinB、sinC表示出b、c,由内角和定理求出C与B的关系式,代入b-2c利用两角差的正弦公式化简,根据B的范围和余弦函数的性质得出b-2c的取值范围.

解答 解:∵a=2,A=60°,∴由正弦定理得$\frac{b}{sinB}$=$\frac{c}{sinC}=\frac{a}{sinA}$=$\frac{4\sqrt{3}}{3}$,
则b=$\frac{4\sqrt{3}}{3}$sinB,c=$\frac{4\sqrt{3}}{3}$sinC,
由A+B+C=π得B+C=$\frac{2π}{3}$,即C=$\frac{2π}{3}$-B,则0<B<$\frac{2π}{3}$,
∴b-2c=$\frac{4\sqrt{3}}{3}$(sinB-2sinC)=$\frac{4\sqrt{3}}{3}$[sinB-2sin($\frac{2π}{3}$-B)]
=$\frac{4\sqrt{3}}{3}$(sinB-2×sin$\frac{2π}{3}$cosB+2×cos$\frac{2π}{3}$sinB)=-4cosB,
∵0<B<$\frac{2π}{3}$,∴$-\frac{1}{2}<cosB<1$,则-4<-4cosB<2,
∴b-2c的取值范围是(-4,2),
故答案为:(-4,2).

点评 本题考查了正弦定理的应用,两角和差的正弦函数公式,以及余弦函数的图象与性质,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.已知平面向量$\overrightarrow{O{P}_{1}}$、$\overrightarrow{O{P}_{2}}$、$\overrightarrow{O{P}_{3}}$满足条件$\overrightarrow{O{P}_{1}}$+$\overrightarrow{O{P}_{2}}$+$\overrightarrow{O{P}_{3}}$=$\overrightarrow{0}$,|$\overrightarrow{O{P}_{1}}$|=|$\overrightarrow{O{P}_{2}}$|=|$\overrightarrow{O{P}_{3}}$|=1.
(1)求证:△P1P2P3是正三角形;
(2)试判断直线OP1与直线P2P3的位置关系,并证明你的判断.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知函数f(x)=3x-2,x∈R.规定:给定一个实数x0,赋值x1=f(x0),若x1≤244,则继续赋值x2=f(x1),…,以此类推,若xn-1≤244,则xn=f(xn-1),否则停止赋值,如果得到xn称为赋值了n次(n∈N*).已知赋值8次后该过程停止,则x0的取值范围是$\frac{28}{27}<{x_0}≤\frac{10}{9}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.著名数学家华罗庚曾说过:“数形结合百般好,隔裂分家万事休.”事实上,有很多代数问题可以转化为几何问题加以解决,如:$\sqrt{{{(x-a)}^2}+{{(y-b)}^2}}$可以转化为平面上点M(x,y)与点N(a,b)的距离.结合上述观点,可得f(x)=$\sqrt{{x^2}+4x+20}$+$\sqrt{{x^2}+2x+10}$的最小值为5$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知函数$f(x)=lg(\sqrt{1+4{x^2}}+2x)+1$,则$f(lg3)+f(lg\frac{1}{3})$=2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知数列{an}的通项公式为an=$\frac{3}{2n-5}$,记数列{an}的前n项和为Sn,则使Sn≤0成立的n的最大值为(  )
A.2B.3C.4D.5

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.△ABC中,内角A,B,C所对的边分别为a,b,c,且BC边上的高为$\frac{a}{2}$,则$\frac{c}{b}+\frac{b}{c}$的最大值为2$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.下列向量中不是单位向量的是(  )
A.(-1,0)B.(1,1)C.(cos37°,sin37°)D.$\frac{\overline a}{{|{\overline a}|}}(|{\overline a}|≠0)$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.要得到函数y=sin2x的图象,只要将函数y=sin(2x-$\frac{π}{3}$)的图象(  )
A.向左平行移动$\frac{π}{3}$个单位B.向左平行移动$\frac{π}{6}$个单位
C.向右平行移动$\frac{π}{3}$个单位D.向右平行移动$\frac{π}{6}$个单位

查看答案和解析>>

同步练习册答案