精英家教网 > 高中数学 > 题目详情
5.已知平面向量$\overrightarrow{O{P}_{1}}$、$\overrightarrow{O{P}_{2}}$、$\overrightarrow{O{P}_{3}}$满足条件$\overrightarrow{O{P}_{1}}$+$\overrightarrow{O{P}_{2}}$+$\overrightarrow{O{P}_{3}}$=$\overrightarrow{0}$,|$\overrightarrow{O{P}_{1}}$|=|$\overrightarrow{O{P}_{2}}$|=|$\overrightarrow{O{P}_{3}}$|=1.
(1)求证:△P1P2P3是正三角形;
(2)试判断直线OP1与直线P2P3的位置关系,并证明你的判断.

分析 (1)(法一)根据向量的运算法则计算出|$\overrightarrow{{{P}_{1}P}_{2}}$|=|$\overrightarrow{{{P}_{1}P}_{3}}$|=|$\overrightarrow{{{P}_{2}P}_{3}}$|,从而判断三角形的形状;
(法二)设出坐标,根据坐标运算得到P1P2=P1P3=P2P3,判断三角形的形状;
(2)根据向量乘积是0,得到向量垂直即可.

解答 证明:(1)(法一)∵$\overrightarrow{O{P}_{1}}$+$\overrightarrow{O{P}_{2}}$+$\overrightarrow{O{P}_{3}}$=$\overrightarrow{0}$,
∴$\overrightarrow{O{P}_{1}}$+$\overrightarrow{O{P}_{2}}$=-$\overrightarrow{O{P}_{3}}$,
∴${(\overrightarrow{{OP}_{1}}+\overrightarrow{{OP}_{2}})}^{2}$=${\overrightarrow{{OP}_{3}}}^{2}$,
∴${\overrightarrow{{OP}_{1}}}^{2}$+2$\overrightarrow{{OP}_{1}}$•$\overrightarrow{{OP}_{2}}$+${\overrightarrow{{OP}_{2}}}^{2}$=${\overrightarrow{{OP}_{3}}}^{2}$,
∵|$\overrightarrow{O{P}_{1}}$|=|$\overrightarrow{O{P}_{2}}$|=|$\overrightarrow{O{P}_{3}}$|=1,∴${\overrightarrow{{OP}_{1}}}^{2}$=${\overrightarrow{{OP}_{2}}}^{2}$=${\overrightarrow{{OP}_{3}}}^{2}$=1,
∴$\overrightarrow{{OP}_{1}}$•$\overrightarrow{{OP}_{2}}$=-$\frac{1}{2}$,
${|\overrightarrow{{{P}_{1}P}_{2}}|}^{2}$=|$\overrightarrow{{OP}_{2}}$-$\overrightarrow{{OP}_{1}}$|2=${\overrightarrow{{OP}_{2}}}^{2}$-2$\overrightarrow{{OP}_{1}}$•$\overrightarrow{{OP}_{2}}$+${\overrightarrow{{OP}_{1}}}^{2}$=3,
∴|$\overrightarrow{{{P}_{1}P}_{2}}$|=$\sqrt{3}$,同理|$\overrightarrow{{{P}_{1}P}_{3}}$|=|$\overrightarrow{{{P}_{2}P}_{3}}$|=$\sqrt{3}$,
∴△P1P2P3是正三角形;
(方法二)设P1(x1,y1),P2(x2,y2),P3(x3,y3),
∵|$\overrightarrow{{OP}_{1}}$|=|$\overrightarrow{{OP}_{2}}$|=|$\overrightarrow{{OP}_{3}}$|=1,∴$\left\{\begin{array}{l}{{{x}_{1}}^{2}{{+y}_{1}}^{2}=1}\\{{{x}_{2}}^{2}{{+y}_{2}}^{2}=1}\\{{{x}_{3}}^{2}{{+y}_{3}}^{2}=1}\end{array}\right.$,
∵$\overrightarrow{O{P}_{1}}$+$\overrightarrow{O{P}_{2}}$+$\overrightarrow{O{P}_{3}}$=$\overrightarrow{0}$,
∴$\left\{\begin{array}{l}{{x}_{1}{+x}_{2}{+x}_{3}=0}\\{{y}_{1}{+y}_{2}{+y}_{3}=0}\end{array}\right.$,
∴$\left\{\begin{array}{l}{{x}_{1}{+x}_{2}={-x}_{3}}\\{{y}_{1}{+y}_{2}={-y}_{3}}\end{array}\right.$,
∴${{(x}_{1}{+x}_{2})}^{2}$+${{(y}_{1}{+y}_{2})}^{2}$=${{x}_{3}}^{2}$+${{y}_{3}}^{2}$,
∴2x1 x2+2y1 y2=-1,
∴p1p2=$\sqrt{{{(x}_{1}{-x}_{2})}^{2}{+{(y}_{1}{-y}_{2})}^{2}}$=$\sqrt{3}$,
P1P3=P2P3=$\sqrt{3}$,∴P1P2=P1P3=P2P3
∴△P1P2P3是正三角形;
(2)OP1⊥P2P3
证明:∵$\overrightarrow{O{P}_{1}}$+$\overrightarrow{O{P}_{2}}$+$\overrightarrow{O{P}_{3}}$=$\overrightarrow{0}$,∴$\overrightarrow{O{P}_{1}}$=-$\overrightarrow{O{P}_{2}}$-$\overrightarrow{O{P}_{3}}$,
∴$\overrightarrow{{OP}_{1}}$•$\overrightarrow{{{P}_{2}P}_{3}}$=$\overrightarrow{{OP}_{1}}$($\overrightarrow{{OP}_{3}}$-$\overrightarrow{{OP}_{2}}$)
=(-$\overrightarrow{{OP}_{2}}$-$\overrightarrow{{OP}_{3}}$)($\overrightarrow{{OP}_{3}}$-$\overrightarrow{{OP}_{2}}$)
=${\overrightarrow{{OP}_{2}}}^{2}$-${\overrightarrow{{OP}_{3}}}^{2}$,
∵|$\overrightarrow{O{P}_{1}}$|=|$\overrightarrow{O{P}_{2}}$|=|$\overrightarrow{O{P}_{3}}$|=1,${\overrightarrow{{OP}_{2}}}^{2}$=${\overrightarrow{{OP}_{3}}}^{2}$,
∴$\overrightarrow{{OP}_{1}}$•$\overrightarrow{{{P}_{2}P}_{3}}$=0,OP1⊥P2P3

点评 本题考查了向量的运算,向量垂直问题,考查向量的模以及两点间的距离,是一道中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.△ABC中,角A、B、C所对的边分别是a、b、c,且c2-b2=ab,C=$\frac{π}{3}$,则$\frac{sinA}{sinB}$的值为(  )
A.$\frac{1}{2}$B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.下面有四个命题:
(1)若-a不属于N,则a属于N;
(2)若a∈N,b∈N,则a+b的最小值为0;
(3)x2+1=2x的解可表示为{1,1};
其中正确命题的个数为(  )
A.0个B.1个C.2个D.3个

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.在边长为1的正三角形ABC中,若$\overrightarrow{AB}$=$\overrightarrow{a}$,$\overrightarrow{BC}$=$\overrightarrow{b}$,$\overrightarrow{CA}$=$\overrightarrow{c}$,则$\overrightarrow{a}$•$\overrightarrow{b}$+$\overrightarrow{b}$•$\overrightarrow{c}$+$\overrightarrow{c}$•$\overrightarrow{a}$等于(  )
A.$\frac{3}{2}$B.-$\frac{3}{2}$C.3D.0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=$\frac{1}{\sqrt{x}}$的定义域为集合A,集合B=x{x|ax-1<0,a∈N*},集合C={{x|log2x<-1}.
(1)求A∩B;
(2)若C⊆(A∩B),求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知函数$f(x)=\left\{\begin{array}{l}-x+1(x≤0)\\ lnx(x>0)\end{array}\right.$,则函数y=f[f(x)]+1的零点个数是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.抛物线x=8ay2的焦点F的坐标是$(\frac{1}{32a},0)$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知△ABC,点E是三角形内一点,BE延长后交AC于点D,设∠DBC=30°,∠DCE=10°,∠ECB=20°,∠DBA=40°.
(1)若AB=$\frac{2}{sin40°}$,求AD的长;
(2)求证:∠BAE=60°.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.在△ABC中,内角A,B,C所对的边分别a,b,c,其中a=2,A=60°,则b-2c的取值范围为(-4,2).

查看答案和解析>>

同步练习册答案