已知两点及,点在以、为焦点的椭圆上,且、、构成等差数列.
(Ⅰ)求椭圆的方程;
(Ⅱ)如图,动直线与椭圆有且仅有一个公共点,点是直线上的两点,且,. 求四边形面积的最大值.
(1);(2)
解析
试题分析:(1)确定椭圆标准方程 ,先定位后定量.由等差中项得,根据椭圆定义,得,又,所以可求,由椭圆焦点在轴,写出椭圆方程;(2)将直线方程和椭圆方程联立,并利用列方程,得的等式,求四边形面积的最大值,关键在于建立关于面积的目标函数,然后确定函数的最大值即可,分和讨论,当时,结合平面几何知识,得(其中表示两焦点到直线的距离),再结合得关于的函数,并求其范围;当时,该四边形是矩形,求其面积,从而确定的范围,进而确定最大值.
试题解析:(1)依题意,设椭圆的方程为.
构成等差数列,
, .
又,.
椭圆的方程为.
(2) 将直线的方程代入椭圆的方程中,得,由直线与椭圆仅有一个公共点知,,化简得:.
设,, (法一)当时,设直线的倾斜角为,则,,
,
,当时,,,.当时,四边形是矩形,.所以四边形面积的最大值为.
(法二),
.
.
四边形的面积
科目:高中数学 来源: 题型:解答题
已知椭圆的左、右焦点分别为、,为原点.
(1)如图1,点为椭圆上的一点,是的中点,且,求点到轴的距离;
(2)如图2,直线与椭圆相交于、两点,若在椭圆上存在点,使四边形为平行四边形,求的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分12分)已知中心在原点的椭圆的离心率,一条准线方程为
(1)求椭圆的标准方程;
(2)若以>0)为斜率的直线与椭圆相交于两个不同的点,且线段的垂直平分线与两坐标轴围成的三角形的面积为,求的取值范围。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
设椭圆E:=1()过点M(2,), N(,1),为坐标原点
(I)求椭圆E的方程;
(II)是否存在以原点为圆心的圆,使得该圆的任意一条切线与椭圆E恒有两个交点A,B,且?若存在,写出该圆的方程;若不存在,说明理由。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知抛物线的顶点在坐标原点,焦点为,点是点关于轴的对称点,过点的直线交抛物线于两点。
(Ⅰ)试问在轴上是否存在不同于点的一点,使得与轴所在的直线所成的锐角相等,若存在,求出定点的坐标,若不存在说明理由。
(Ⅱ)若的面积为,求向量的夹角;
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图所示,已知圆为圆上一动点,点是线段的垂直平分线与直线的交点.
(1)求点的轨迹曲线的方程;
(2)设点是曲线上任意一点,写出曲线在点处的切线的方程;(不要求证明)
(3)直线过切点与直线垂直,点关于直线的对称点为,证明:直线恒过一定点,并求定点的坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知双曲线,、是双曲线的左右顶点,是双曲线上除两顶点外的一点,直线与直线的斜率之积是,
求双曲线的离心率;
若该双曲线的焦点到渐近线的距离是,求双曲线的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
在平面直角坐标系中,已知椭圆的左焦点为,且椭圆的离心率.
(1)求椭圆的方程;
(2)设椭圆的上下顶点分别为,是椭圆上异于的任一点,直线分别交轴于点,证明:为定值,并求出该定值;
(3)在椭圆上,是否存在点,使得直线与圆相交于不同的两点,且的面积最大?若存在,求出点的坐标及对应的的面积;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com