精英家教网 > 高中数学 > 题目详情

设椭圆E:=1()过点M(2,), N(,1),为坐标原点
(I)求椭圆E的方程;
(II)是否存在以原点为圆心的圆,使得该圆的任意一条切线与椭圆E恒有两个交点A,B,且?若存在,写出该圆的方程;若不存在,说明理由。

(I)椭圆E的方程为;(II)存在圆心在原点的圆,使得该圆的任意一条切线与椭圆E恒有两个交点A,B,且 

解析试题分析:(I)将点M(2,) ,N(,1)的坐标代入椭圆的方程即得一方程组:解这个方程组得,从而得椭圆E的方程为 
(II)假设存在圆心在原点的圆,使得该圆的任意一条切线与椭圆E恒有两个交点A,B,且 设该圆的切线方程为,联立方程组,利用韦达定理及找到k与m间的关系式,再利用直线与圆相切,看看能否求出这样的圆来,若能求出这样的圆,则说明存在,若不能求出这样的圆,则说明不存在
试题解析: (I)因为椭圆E: (a,b>0)过M(2,) ,N(,1)两点,
所以解得所以椭圆E的方程为     4分
(II)假设存在圆心在原点的圆,使得该圆的任意一条切线与椭圆E恒有两个交点A,B,且,设该圆的切线方程为解方程组,即  
则△=,即
,  7分
要使,需使,即,
所以,所以,所以,
所以,即,                  9分
因为直线为圆心在原点的圆的一条切线,所以圆的半径为,,,
所求的圆为,                       11分
此时圆的切线都满足,
而当切线的斜率不存在时切线为与椭圆的两个交点为满足,                    12分 
综上, 存在圆心在原点的圆,使得该圆的任意一条切线与椭圆E恒有两个交点A,B,且 
13分
考点:1、椭圆的方程;2、直线与圆锥曲线的位置关系

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知两点,直线AM、BM相交于点M,且这两条直线的斜率之积为.
(Ⅰ)求点M的轨迹方程;
(Ⅱ)记点M的轨迹为曲线C,曲线C上在第一象限的点P的横坐标为1,直线PE、PF与圆)相切于点E、F,又PE、PF与曲线C的另一交点分别为Q、R.
求△OQR的面积的最大值(其中点O为坐标原点).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆的两个焦点为F1,F2,椭圆上一点M
满足.
(1)求椭圆的方程;
(2)若直线L:y=与椭圆恒有不同交点A,B,且(O为坐标原点),求实数k的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设椭圆的左、右顶点分别为,离心率.过该椭圆上任一点P作PQ⊥x轴,垂足为Q,点C在QP的延长线上,且.
(1)求椭圆的方程;
(2)求动点C的轨迹E的方程;
(3)设直线MN过椭圆的右焦点与椭圆相交于M、N两点,且,求直线MN的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆的方程为,双曲线的左、右焦点分别为的左、右顶点,而的左、右顶点分别是的左、右焦点,
(1)求双曲线的方程;
(2)若直线与椭圆及双曲线都恒有两个不同的交点,且的两个交点A和B满足(其中0为原点),求k的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知两点,点在以为焦点的椭圆上,且构成等差数列.
(Ⅰ)求椭圆的方程;
(Ⅱ)如图,动直线与椭圆有且仅有一个公共点,点是直线上的两点,且. 求四边形面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,F1,F2是离心率为的椭圆C:(a>b>0)的左、右焦点,直线:x=-将线段F1F2分成两段,其长度之比为1:3.设A,B是C上的两个动点,线段AB的中垂线与C交于P,Q两点,线段AB的中点M在直线l上.

(Ⅰ)求椭圆C的方程;
(Ⅱ)求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知顶点在原点,焦点在轴上的抛物线被直线截得的弦长为,求抛物线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆C:的离心率为,以原点为圆心,椭圆的短半轴长为半径的圆与直线相切.
(1)求椭圆的方程;
(2)若过点(2,0)的直线与椭圆相交于两点,设为椭圆上一点,且满足为坐标原点),当 时,求实数取值范围.

查看答案和解析>>

同步练习册答案