分析 (Ⅰ)由AO⊥平面BCD,得AO⊥BC,又已知BC⊥BD,且AO∩BD=O,由线面垂直的判定得BC⊥平面ABD,即可证得BC⊥AD;
(Ⅱ)由(Ⅰ)得,AD⊥BC,又AD⊥AC,BC∩AC=C,得AD⊥平面ABC,又AB?平面ABC,得AD⊥AB,由已知CD,求得BD,AD,进一步可求出AB,得到△ABD为等腰直角三角形,故O为BD的中点,求出OD,即可求出三棱锥A-BCD的体积.
解答 (Ⅰ)证明:由AO⊥平面BCD,BC?平面BCD,得AO⊥BC,![]()
又∵BC⊥BD,且AO∩BD=O,
∴BC⊥平面ABD,
又AD?平面ABD,
∴BC⊥AD;
(Ⅱ)解:由(Ⅰ)得,AD⊥BC,又AD⊥AC,BC∩AC=C,
∴AD⊥平面ABC,
又∵AB?平面ABC,
∴AD⊥AB,
由已知CD=2,得BD=DCsin45°=$\sqrt{2}$,
AD=DCsin30°=1,
∴AB=1,
∴△ABD为等腰直角三角形,故O为BD的中点.
∴OD=$\frac{1}{2}$BD=$\frac{\sqrt{2}}{2}$,
∴${V}_{A-BCD}=\frac{1}{3}$×$\frac{1}{2}$$•\sqrt{2}•\sqrt{2}•\frac{\sqrt{2}}{2}=\frac{\sqrt{2}}{6}$.
点评 本题考查直线与平面垂直的判定,考查了空间想象能力和思维能力,训练了棱锥体积的求法,是中档题.
科目:高中数学 来源: 题型:选择题
| A. | 5 | B. | $\frac{16}{3}$ | C. | $\frac{22}{3}$ | D. | 8 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 满意度评分 | 低于60分 | 60分到79分 | 80分到89分 | 不低于90分 |
| 满意度等级 | 不满意 | 基本满意 | 满意 | 非常满意 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 向左平移$\frac{π}{8}$个单位 | B. | 向右平移$\frac{π}{8}$个单位 | ||
| C. | 向左平移$\frac{π}{4}$个单位 | D. | 向右平移$\frac{π}{4}$个单位 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 日期 | 11日 | 12日 | 13日 | 14日 | 15日 |
| 平均气温x(℃) | 9 | 10 | 12 | 11 | 8 |
| 销量y(杯) | 23 | 25 | 30 | 26 | 21 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com