精英家教网 > 高中数学 > 题目详情

已知函数的部分图象如图所示.
(1)求函数的解析式,并写出 的单调减区间;
(2)已知的内角分别是A,B,C,角A为锐角,且的值.

(1)(2).

解析试题分析:(1)根据函数的图象确定得到 
结合图象可得的单调递减区间为
(2)由(1)可知,
根据角为锐角,得到.
进一步应用三角函数诱导公式、同角公式、两角和差的三角函数公式即可得解.
(1)由周期
所以                                 2分
时,,可得
因为所以               4分
由图象可得的单调递减区间为        6分
(2)由(1)可知,, 即,
又角为锐角,∴.                                     8分
.                       9分
                         10分
.             12分
考点:三角函数式的图象和性质,三角函数的同角公式、诱导公式、两角和差的三角函数公式.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知α∈0,.
(1) 求值; (2)求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

将函数的图形向右平移个单位后得到的图像,已知的部分图像如图所示,该图像与y轴相交于点,与x轴相交于点P、Q,点M为最高点,且的面积为.

(1)求函数的解析式;
(2)在中,分别是角A,B,C的对边,,且,求面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1) 化简  并求的振幅、相位、初相;
(2) 当时,求f(x)的最小值以及取得最小值时x的集合.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(1)用“五点法”画出函数在一个周期内的图像
(2)求函数的最小正周期和单调增区间;
(3)在区间上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,已知正方形ABCD在直线MN的上方,边BC在直线MN上,E是线段BC上一点,以AE为边在直线MN的上方作正方形AEFG,其中AE=2,记∠FEN=,△EFC的面积为

(1)求之间的函数关系;
(2)当角取何值时最大?并求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数为偶函数,其图象上相邻的两个最低点间的距离为
(1)求的解析式;
(2)若的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设△ABC三个内角A、B、C所对的边分别为a,b,c. 已知C=,acosA=bcosB.
(1)求角A的大小;
(2)如图,在△ABC的外角∠ACD内取一点P,使得PC=2.过点P分别作直线CA、CD的垂线PM、PN,垂足分别是M、N.设∠PCA=α,求PM+PN的最大值及此时α的取值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数的图像过点,且b>0,又的最大值为.
(1)将写成含的形式;
(2)由函数y =图像经过平移是否能得到一个奇函数y =的图像?若能,请写出平移的过程;若不能,请说明理由.

查看答案和解析>>

同步练习册答案