精英家教网 > 高中数学 > 题目详情
17.如图,梯形ABCD内接于圆O,AD∥BC,过点C作圆O的切线,交BD的延长线于点F,交AD的延长线于点E.
(Ⅰ)求证:AB2=DE•BC;
(Ⅱ)若BD=BC=9,AB=6,求切线FC的长.

分析 (Ⅰ)证明△CDE~△BCD,然后推出AB2=DE•BC;
(Ⅱ)证明△CDF~△BCF,利用已知条件求出切线FC的长.

解答 解:(Ⅰ)因为CF与圆O相切,所以∠DCE=∠DBC,又DE∥BC,所以∠CDE=∠DCB,所以△CDE~△BCD,可得$\frac{DC}{BC}=\frac{DE}{DC}$,所以DC2=DE•BC,
又AB=DC,所以AB2=DE•BC…(5分)
(Ⅱ)∠DCE=∠DBC,∠BFC是公共角,所以△CDF~△BCF,
所以$\frac{FC}{DF}=\frac{FB}{FC}=\frac{BC}{CD}=\frac{9}{6}$,所以$FC=6+\frac{2}{3}FD$,
又FC2=FD•FB=FD•(FD+9),所以$FC=\frac{54}{5}$.…(10分)

点评 本题考查直线与圆的位置关系的应用,三角形相似的判断与应用,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.若平面向量$\overrightarrow{a}$,$\overrightarrow{b}$满足|$\overrightarrow{a}$|=1,|$\overrightarrow{b}$|=2,$\overrightarrow{a}$$⊥\overrightarrow{b}$,则|$\overrightarrow{a}$-$\overrightarrow{b}$|是(  )
A.3B.2C.$\sqrt{5}$D.$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.等差数列{an},其前n项和为Sn,且S30>0,S31<0,则前15项之和最大.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.《九章算术》是我国古代内容极为丰富的数学名著,书中有如下命题:“尽有委米依坦内角,下周八尺,高五尺,圆周率约为三,问:积为几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,已知圆周率约为3,问米堆的体积为多少?”(  )
A.$\frac{4096}{9}$B.$\frac{1280}{9}$C.$\frac{320}{9}$D.$\frac{256}{9}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.求平行于直线2x-y+10=0且与两坐标轴围成的三角形的面积为9的直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.关于x的不等式x2-2ax-8a2<0(a>0)的解集为(x1,x2),且x2+x1=15,则a的值为(  )
A.$\frac{5}{2}$B.$\frac{7}{2}$C.$\frac{15}{4}$D.$\frac{15}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.将函数y=sin2x的图象向右平移φ个单位长度后所得图象的解析式为$y=sin(2x-\frac{π}{6})$,则φ=$\frac{π}{12}$$(0<φ<\frac{π}{2})$,再将函数$y=sin(2x-\frac{π}{6})$图象上各点的横坐标伸长到原来的2倍(纵坐标不变)后得到的图象的解析式为y=sin(x-$\frac{π}{6}$).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.若关于x的不等式组$\left\{\begin{array}{l}{{x}^{2}-ax+4>0}\\{a{x}^{2}-x+1>0}\end{array}\right.$对于x∈[1,3]恒成立,则实数a的取值范围是($\frac{1}{4}$,4).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知函数f(x)为奇函数,且当x<0时,f(x)=x2-$\frac{1}{x}$,则f(1)=-2.

查看答案和解析>>

同步练习册答案