| A. | $\frac{π}{6}$,$\frac{1}{2}$ | B. | $\frac{π}{3}$,$\frac{{\sqrt{3}}}{2}$ | C. | $\frac{π}{3}$,$\frac{1}{2}$ | D. | $\frac{π}{6}$,$\frac{{\sqrt{3}}}{2}$ |
分析 a,b,c成等比数列,可得b2=ac.已知a2-c2=ac-bc,可得b2+c2-a2=bc,利用余弦定理可得A,再利用正弦定理即可得出$\frac{bsinB}{c}$的值.
解答 解:a,b,c成等比数列,∴b2=ac.
∵a2-c2=ac-bc,∴a2-c2=b2-bc,即b2+c2-a2=bc,
∴cosA=$\frac{{b}^{2}+{c}^{2}-{a}^{2}}{2bc}$=$\frac{1}{2}$,
∵A∈(0,π),∴A=$\frac{π}{3}$.
由正弦定理:$\frac{a}{sinA}=\frac{b}{sinB}$,∴sinB=$\frac{bsinA}{a}$,
∴$\frac{bsinB}{c}$=$\frac{{b}^{2}sinA}{ac}$=sinA=$\frac{\sqrt{3}}{2}$.
故选:B.
点评 本题考查了正弦定理余弦定理、等比数列的性质,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-∞,3] | B. | (-∞,5] | C. | [3,+∞) | D. | [5,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com