分析 (1)求出函数的对数,计算f′(2),求出a的值,求出函数的导数,求出函数的单调区间即可;
(2)令$g(x)=f(x)-(\frac{1}{x}-{{e}^{1-x}})$,由$\frac{1}{x}-{{e}^{1-x}}=\frac{{{{e}^{x-1}}-x}}{{x{{e}^{x-1}}}}$,令h(x)=ex-1-x,根据函数的单调性证明即可.
解答 解:(1)函数f(x)定义域为(0,+∞),$f'(x)=2ax-\frac{1}{x}$,…(2分)
由已知得$f'(2)=\frac{3}{2}$,所以$a=\frac{1}{2}$,…(3分)
所以$f'(x)=x-\frac{1}{x}=\frac{{{x^2}-1}}{x}$,由f'(x)>0得x>1,由f'(x)<0得0<x<1,
故函数f(x)的单调递增区间为(1,+∞),单调递减区间为(0,1). …(5分)
(2)令$g(x)=f(x)-(\frac{1}{x}-{{e}^{1-x}})$,则$g'(x)=x-\frac{1}{x}+\frac{1}{x^2}-{{e}^{1-x}}$,…(6分)
由$\frac{1}{x}-{{e}^{1-x}}=\frac{{{{e}^{x-1}}-x}}{{x{{e}^{x-1}}}}$,令h(x)=ex-1-x,则h'(x)=ex-1-1,
当x>1时,h'(x)>0,所以h(x)在(1,+∞)上为增函数,
所以h(x)>h(1)=0,所以$\frac{1}{x}-{{e}^{1-x}}>0$,即:$-{{e}^{1-x}}>-\frac{1}{x}$,…(9分)
所以$g'(x)>x-\frac{2}{x}+\frac{1}{x^2}$,而$x-\frac{2}{x}+\frac{1}{x^2}=\frac{{{x^3}-2x+1}}{x^2}>\frac{{{x^2}-2x+1}}{x^2}>0$,
所以g'(x)>0,所以g(x)在(1,+∞)上为增函数,
所以g(x)>g(1)=0,即:$f(x)>\frac{1}{x}-{{e}^{1-x}}$ …(12分)
点评 本题考查了函数的单调性、最值问题,考查导数的应用以及转化思想,是一道综合题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 0 | B. | 1 | C. | 2 | D. | 3 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | ①② | B. | ①④ | C. | ①②③ | D. | ③④ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com