精英家教网 > 高中数学 > 题目详情
点M(x,y)在函数y=-2x+8的图象上,当x∈[-2,2]时,求
y+1
x+1
的取值范围.
考点:直线的斜率
专题:直线与圆
分析:可得
y+1
x+1
表示点C(-1,-1)与线段y=-2x+8,x∈[-2,2]上的点M连线的斜率,由斜率公式结合倾斜角的关系可得.
解答: 解:由题意可得
y+1
x+1
表示点C(-1,-1)与线段y=-2x+8,x∈[-2,2]上的点M连线的斜率,
易得当x=-2时,y=12,当x=2时,y=4,可得A(-2,12),B(2,4),
由斜率公式可得kCA=
-1-12
-1-(-2)
=-13,kA=
-1-4
-1-2
=
5
3

y+1
x+1
的取值范围为(-∞,-13]∪[
5
3
,+∞)
点评:本题考查直线的斜率,注意直线的斜率和倾斜角的关系是解决问题的关键,属基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
-x2+2x,x>0
0,x=0
x2+mx,x<0
是奇函数.
(1)求实数m的值;
(2)若函数f(x)在区间[-1,a-2]上单调递增,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

300°的弧度数是(  )
A、
3
B、
3
C、
6
D、-
π
3

查看答案和解析>>

科目:高中数学 来源: 题型:

求下列函数的定义域
(1)y=(x-2) 
1
4

(2)y=log2(9-x2
(3)y=
1
x-1

查看答案和解析>>

科目:高中数学 来源: 题型:

集合A={x|x2+3x-10<0},B={x|0<x+1<4},则A∩(∁RB)=(  )
A、{x|-1<x<2}
B、{x|-5≤x≤-1或2<x≤3}
C、{x|-5<x≤-1}
D、{x|-5≤x≤-1}

查看答案和解析>>

科目:高中数学 来源: 题型:

计算
100
n=1
(n-1)
=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知x满足2log0.5x+1≤0,log0.5x+3≥0,求函数f(x)=(log2
x
2
)(log2
x
4
)的最值.

查看答案和解析>>

科目:高中数学 来源: 题型:

对甲、乙两种商品的重量的误差进行抽查,测得数据如下(单位:mg):
甲:13 15 14 9 14 21 9 10 11 14
乙:10 14 9 12 15 14 11 19 22 16
(1)画出样本数据的茎叶图,并指出甲,乙两种商品重量误差的中位数;
(2)计算甲种商品重量误差的样本方差.

查看答案和解析>>

科目:高中数学 来源: 题型:

设a,b,c∈(0,+∞),且a+b+c=1,求证(1-a)(1-b)(1-c)≥8abc.

查看答案和解析>>

同步练习册答案