精英家教网 > 高中数学 > 题目详情
9.已知数列{an}中,an=$\sqrt{5n-1}$,n∈N*,将数列{an}中的整数项按原来的顺序组成数列{bn},则b2015=5037.

分析 由an=$\sqrt{5n-1}$,n∈N*,可得an的整数项为:$\sqrt{4}$,$\sqrt{9}$,$\sqrt{49}$,$\sqrt{64}$,$\sqrt{144}$,$\sqrt{169}$,….即整数:2,3,7,8,12,13,….其规律就是各项之间是+1,+4,+1,+4,+1,+4这样递增的,可得b2n-1=2+5(n-1),b2n=3+5(n-1),即可得出.

解答 解:由an=$\sqrt{5n-1}$,n∈N*,可得此数列为$\sqrt{4}$,$\sqrt{9}$,$\sqrt{14}$,$\sqrt{19}$,$\sqrt{24}$,$\sqrt{29}$,$\sqrt{34}$,$\sqrt{39}$,$\sqrt{44}$,$\sqrt{49}$,$\sqrt{54}$,$\sqrt{59}$,$\sqrt{64}$,….
an的整数项为:$\sqrt{4}$,$\sqrt{9}$,$\sqrt{49}$,$\sqrt{64}$,$\sqrt{144}$,$\sqrt{169}$,….
即整数:2,3,7,8,12,13,….
其规律就是各项之间是+1,+4,+1,+4,+1,+4这样递增的,
∴b2n-1=2+5(n-1)=5n-3,
b2n=3+5(n-1)=5n-2.
由2n-1=2015,解得n=1008,
∴b2015=5×1008-3=5037.
故答案为:5037.

点评 本题考查了递推式的应用、观察分析猜想归纳数列通项公式、等差数列的通项公式,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.计算:
(1)1+$\frac{1}{1+2}$+$\frac{1}{1+2+3}$+…+$\frac{1}{1+2+3+…+n}$;
(2)$\frac{1}{2}$+$\frac{3}{{2}^{2}}$+$\frac{5}{{2}^{3}}$+…+$\frac{2n-1}{{2}^{n}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.判断y=ln$\frac{2-x}{2+x}$在[-1,1]上的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知等比数列的前n项和为Sn,若S3:S2=3:2,则公比q=$1或-\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.如图,向边长为l0cm的正方形内随机撒1000粒芝麻,落在阴影部分的芝麻有345粒,则可估计阴影部分的面积为34.5cm2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知数列{an},{bn}满足an+1+2bn=an+2bn+1,n∈N*
(1)若a1=2,bn=2n+3,求数列{an}的通项公式;
(2)若a1=4,bn=2n,Sn为数列{an}的前n项和,且数列{$\frac{{a}_{n}}{{S}_{n}{S}_{n+1}}$}的前n项和Tn≥m恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.袋中有大小相同的4个红球,6个白球,每次从中摸取一球,每个球被取到的可能性相同,现不放回地取3个球,则在前两次取出的是白球的前提下,第三次取出红球的概率为(  )
A.$\frac{1}{2}$B.$\frac{1}{3}$C.$\frac{1}{4}$D.$\frac{1}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知函数f(x)=x2+ax+b(a、b∈R)的两个零点为x1、x2,并且0<x1<1<x2<2,则a2+b2-6b的取值范围是(  )
A.[-1,4)B.(-1,4)C.(1,4)D.[-4,1)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知一组样本点(xi,yi),(其中i=1,2,3,…,30),变量x与y线性相关,且根据最小二乘法求得的回归方程是$\stackrel{∧}{y}$=$\stackrel{∧}{b}$x+$\stackrel{∧}{a}$,则下列说法正确的是(  )
A.至少有一个样本点落在回归直线$\stackrel{∧}{y}$=$\stackrel{∧}{b}$x+$\stackrel{∧}{a}$上
B.若$\stackrel{∧}{y}$=$\stackrel{∧}{b}$x+$\stackrel{∧}{a}$斜率$\stackrel{∧}{b}$>0,则变量x与y正相关
C.对所有的解释变量xi(i=1,2,3,…,30),$\stackrel{∧}{b}$xi+$\stackrel{∧}{a}$的值与yi有误差
D.若所有样本点都在$\stackrel{∧}{y}$=$\stackrel{∧}{b}$x+$\stackrel{∧}{a}$上,则变量间的相关系数为1

查看答案和解析>>

同步练习册答案