精英家教网 > 高中数学 > 题目详情
8.已知max{a,b}=$\left\{\begin{array}{l}{a,a≥b}\\{b,a<b}\end{array}\right.$,实数x,y满足$\left\{\begin{array}{l}{x+2y≤6}\\{2x+y≤6}\\{x≥0,y≥0}\end{array}\right.$,则max{2x+3y-1,x+2y+2}的最大值为(  )
A.2B.5C.8D.9

分析 作出不等式组对应的平面区域,利用作差法求出z的表达式,然后根据平移,根据数形结合即可得到结论.

解答 解:作出不等式组对应的平面区域如图:
2x+3y-1-(x+2y+2)=x+y-3,
即z=max{2x+3y-1,x+2y+2}=$\left\{\begin{array}{l}{2x+3y-1,x+y-3≥0}\\{x+2y+2,x+y-3<0}\end{array}\right.$,
其中直线x+y-3=0过A,C点.
在直线x+y-3=0的上方,平移直线z=2x+3y-1(红线),当直线z=2x+3y-1经过点B(2,2)时,
直线z=2x+3y-1的截距最大,
此时z取得最大值为z=2×2+3×2-1=9.
在直线x+y-3=0的下方,平移直线z=x+2y+2(蓝线),当直线z=x+2y+2经过点O(0,0)时,
直线z=x+2y+2的截距最小,
此时z取得最小值为z=0+2=2.
即2≤z≤9,
则max{2x+3y-1,x+2y+2}的最大值为9,
故选:D

点评 本题主要考查线性规划的应用,根据z的几何意义确定对应的直线方程是截距本题的关键.难度较大.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.复数$\frac{2i}{1+i}$的共轭复数是(  )
A.-1-iB.-1+iC.1-iD.1+i

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.设函数f(x)=sin(ωx+φ)(ω,φ是常数,ω>0,0<φ<π),若f(x)在区间[$\frac{π}{6}$,$\frac{π}{3}$]上具有单调性,且f($\frac{π}{6}$)=-f($\frac{π}{3}$)=-f($\frac{π}{2}$),则f($\frac{π}{ω}$)的值为-$\frac{\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.若(1-3x)2015=a0+a1x+…a2015x2015(x∈R),则$\frac{{a}_{1}}{3}+\frac{{a}_{2}}{{3}^{2}}+…\frac{{a}_{2015}}{{3}^{2015}}$的值为(  )
A.3B.0C.-1D.-3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=(x2-ax+1)ex,x∈R.
(1)若函数f(x)的图象在(0,f(0))处的切线与直线x+y-3=0垂直,求实数a的值;
(2)求f(x)的单调区间;
(3)当a=2时,若对于任意x∈[-2,2],t∈[1,3],f(x)≥t2-2mt+2恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知i为虚数单位,则i2015=(  )
A.1B.-2C.iD.-i

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.有5本不同的书,其中语文书2本,数学书2本,物理书1本,若将其随机地摆成一排,则同一科目的书均不相邻的摆法有48种.(用数字作答)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.鹰潭市某学校计划招聘男教师x名,女教师y名,x和y须满足约束条件$\left\{\begin{array}{l}{2x-y≥5}\\{x-y≤2}\\{x<6}\end{array}\right.$,则该校招聘的教师最多(  )名.
A.7B.8C.10D.13

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.甲、乙两人在理论考试中“合格”的概率依次为$\frac{4}{5}$,$\frac{2}{3}$,在操作考试中“合格”概率依次为$\frac{1}{2}$,$\frac{5}{6}$,所有考试是否合格,相互之间没有影响,则甲、乙进行两项考试后,恰有1人两部分考试都合格的概率是$\frac{23}{45}$.

查看答案和解析>>

同步练习册答案