分析 求出双曲线的一条渐近线方程,代入抛物线方程,求得交点A的坐标,求出抛物线的准线方程,由点到直线的距离公式,计算结合离心率公式即可得到所求值.
解答 解:双曲线$\frac{{y}^{2}}{{a}^{2}}$-$\frac{{x}^{2}}{{b}^{2}}$=1(a>0,b>0)的一条渐近线方程设为y=$\frac{a}{b}$x,
代入抛物线x2=8y,可得x=$\frac{8a}{b}$,y=$\frac{8{a}^{2}}{{b}^{2}}$,
抛物线x2=8y的准线为y=-2,
由题意可得$\frac{8{a}^{2}}{{b}^{2}}$+2=4,
即有b=2a,c=$\sqrt{{a}^{2}+{b}^{2}}$=$\sqrt{5}$a,
即有离心率e=$\frac{c}{a}$=$\sqrt{5}$.
故答案为:$\sqrt{5}$.
点评 本题考查双曲线的离心率的求法,注意运用渐近线方程和抛物线的性质,考查运算能力,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{2}$ | B. | $\frac{\sqrt{2}}{2}$ | C. | $\frac{3}{4}$ | D. | 1 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2 | B. | 4 | C. | 6 | D. | 8 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 3 | B. | 2 | C. | $\sqrt{3}$ | D. | $\sqrt{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\sqrt{5}$ | B. | 2 | C. | $\sqrt{3}$ | D. | $\sqrt{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{\sqrt{42}}{6}$ | B. | $\frac{7}{6}$ | C. | $\frac{\sqrt{5}}{2}$ | D. | $\frac{5}{4}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{2}{3}$ | B. | $\frac{5}{6}$ | C. | $\frac{7}{12}$ | D. | $\frac{11}{18}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com