精英家教网 > 高中数学 > 题目详情
18.在△ABC中,内角A,B,C的对边分别为a,b,c,已知sinB+cosBtanC=2sinA.
(1)求角C的大小;
(2)若8a=5b,求cosB的值.

分析 (1)利用同角三角函数基本关系式、和差公式即可得出.
(2)利用正弦定理、和差公式、同角三角函数基本关系式即可得出.

解答 解:(1)∵sinB+cosBtanC=2sinA,∴sinBcosC+cosBsinC=2sinAcosC,即sin(B+C)=2sinAcosC.
即sinA=2sinAcosC.
∵0<A<π,∴sinA≠0,∴cosC=$\frac{1}{2}$.
∵0<C<π,∴C=$\frac{π}{3}$.
(2)在△ABC中,由8a=5b,得8sinA=5sinB,即8sin($\frac{2π}{3}$-B)=5sinB.∴8$(\frac{\sqrt{3}}{2}cosB+\frac{1}{2}sinB)$=5sinB,sinB=4$\sqrt{3}$cosB,
cosB≠0,∴tanB=4$\sqrt{3}$,B为锐角,∴cosB=$\frac{1}{7}$.

点评 本题考查了正弦定理、和差公式、同角三角函数基本关系式,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

16.若直线l的倾斜角是直线4x+3y+4=0的倾斜角的一半,则直线l的斜率为2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知矩形ABCD,AB=2,BC=1,E是CD的中点,则有$\overrightarrow{AE}$•$\overrightarrow{BD}$=-1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.设x1,x2是一元二次方程x2-2ax+a+6=0的两个实根,则${({x_1}-1)^2}+{({x_2}-1)^2}$的最小值为$\frac{49}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.设α:2≤x≤4,β:m+1≤x≤2m+4,m∈R,如果α是β的充分非必要条件,则m的范围是[0,1].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知椭圆$M:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的离心率是$\frac{{\sqrt{2}}}{2}$,其中一个焦点坐标为$(\sqrt{2},0)$.
(1)求椭圆M的标准方程;
(2)若直线y=x+m与椭圆M交于A,B两点,且△OAB(O为坐标原点)面积为$\sqrt{2}$,求m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.如图为y=Acos(ωx+φ)(A>0,ω>0,|φ|<π)的图象的一段,其解析式y=$\sqrt{3}$$cos(2x+\frac{5π}{6})$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.平面直角坐标系中,以坐标原点为极点,x轴的正半轴为极轴,建立极坐标系,在极坐标中,已知圆C经过点$P(\sqrt{2},\frac{π}{4})$,圆心为直线$l:ρsin(θ-\frac{π}{3})=-\frac{{\sqrt{3}}}{2}$与极轴的交点.求:
(1)直线l的普通方程;
(2)圆C的极坐标方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知离心率为$\frac{{\sqrt{2}}}{2}$的椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的右焦点F是圆(x-1)2+y2=1的圆心,过椭圆上的动点P作圆两条切线分别交y轴于M,N(与P点不重合)两点.
(1)求椭圆方程;
(2)求线段MN长的最大值,并求此时点P的坐标.

查看答案和解析>>

同步练习册答案