精英家教网 > 高中数学 > 题目详情
分别写出下列命题的逆命题、逆否命题,并判断它们的真假:
(1)若q<1,则方程x2+2x+q=0有实根;
(2)若x2+y2=0,则x,y全为零.
考点:四种命题
专题:简易逻辑
分析:首先根据逆命题、逆否命题两种命题的基本概念,分别写出两个命题的逆命题、逆否命题;然后根据等价命题的原理和规律,判断这两种命题的真假即可.
解答: 解:(1)原命题:若q<1,则方程x2+2x+q=0有实根;
逆命题:若方程x2+2x+q=0有实根,则q<1,它是一个假命题,
因为q=1时,方程x2+2x+q=0有实根x=-1;
逆否命题:若方程x2+2x+q=0无实根,则q≥1,它是一个真命题.
(2)原命题:若x2+y2=0,则x,y全为零;
逆命题:若x、y全为零,则x2+y2=0,它是一个真命题;
逆否命题:若x、y不全为零,则x2+y2≠0,它是一个真命题.
点评:本题主要考查了四种命题的含义及其运用,属于基础题,解答此题的关键是等价命题的原理和规律的运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知双曲线C:
x2
a2
-
y2
b2
=1(a>0,b>0)的焦距为6,两顶点之间的距离为2,则C的方程为(  )
A、
 x2
8
-
y2
9
=1
B、
x2
8
-y2=1
C、x2-
y2
8
=1
D、
x2
9
-
y2
8
=1

查看答案和解析>>

科目:高中数学 来源: 题型:

等差数列{an},a7-2a4=-1,且a3=0,则公差d=(  )
A、-2
B、-
1
2
C、
1
2
D、2

查看答案和解析>>

科目:高中数学 来源: 题型:

直线y=x+
3
2
被曲线y=
1
2
x2截得线段的中点到原点的距离为(  )
A、29
B、
29
C、
29
4
D、
29
2

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,△ABC的AB边长为2,P,Q分别是AC,BC中点,记
AB
AP
+
BA
BQ
=m,
AB
AQ
+
BA
BP
=n,则(  )
A、m=2,n=4
B、m=3,n=1
C、m=2,n=6
D、m=3n,但m,n的值不确定

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的前n项和为Sn,a1=1,且nan+1=2Sn(n∈N*),数列{bn}满足b1=
1
2
,b2=
1
4
,对任意n∈N*,都有bn+12=bn•bn+2
(1)求数列{an}、{bn}的通项公式;
(2)令Tn=a1b1+a2b2+…+anbn
①求证:
1
2
≤Tn<2;
②若对任意的n∈N*,不等式λnTn+2bnSn<2(λn+3bn)恒成立,试求实数λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1
x2
+4(x≠0),各项均为正数的数列{an}中a1=1,
1
an+12
=f(an),(n∈N*).
(1)求数列{an}的通项公式;
(2)在数列{bn}中,对任意的正整数n,bn
(3n-1)an2+n
an2
=1都成立,设Sn为数列{bn}的前n项和.试比较Sn
1
2
的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)已知双曲线C:
x2
a2
-
y2
b2
=1的焦距为10,点P(2,1)在C的渐近线上,求C的方程.
(2)已知椭圆C:
x2
m2
+
y2
n2
=1(m>0,n>0)的右焦点与抛物线y2=8x的焦点相同,离心率为
1
2
,求椭圆C的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直三棱柱ABC-A1B1C1的底面△ABC中,∠C=90°,BC=
2
,BB1=2,O是AB1的中点,D是AC的中点,M是CC1的中点,
(1)证明:OD∥平面BB1C1C;  
(2)试证:BM⊥AB1

查看答案和解析>>

同步练习册答案