精英家教网 > 高中数学 > 题目详情
如图,海上有A,B两个小岛相距10km,船O将保持观望A岛和B岛所成的视角为60°,现从船O上派下一只小艇沿BO方向驶至C处进行作业,且OC=BO.设AC=xkm.
(1)若AO=
10
3
3
km,求出x的取值;
(2)用x分别表示OA2+OB2和OA•OB,并求出x的取值范围.
考点:解三角形的实际应用
专题:计算题,应用题,解三角形
分析:(1)在△OAB中由余弦定理知:AB2=OA2+OB2-2•OA•OB•cos60°,从而解得:OB=
20
3
3
.在△OAC中,由余弦定理知:AC2=OA2+OC2-2•OA•OC•cos120°,即可解得AC的值.
(2)在△OAC中由余弦定理得,OA2+OC2-2OA•OC•cos120°=x2,可解得OA2+OB2-2OA•OB•cos120°=x2 ①,…在△OAB中,由余弦定理得OA2+OB2-2OA•OB•cos60°=100 ②,从而OA•OB=
x2-100
2
,又由OA2+OB2≥2OA•OB,可得x2≤300,又OA•OB=
x2-100
2
>0,所以解得10<x≤10
3
解答: 解:(1)在△OAB中,AO=
10
3
3
km,∠AOB=60°,AB=10km,
由余弦定理知:AB2=OA2+OB2-2•OA•OB•cos60°,
即有:100=
100
3
+OB2-2×
10
3
3
×OB×
1
2
,从而解得:OB=
20
3
3

在△OAC中,OC=OB=
20
3
3
,OA=
10
3
3
,∠AOC=120°,
由余弦定理知:AC2=OA2+OC2-2•OA•OC•cos120°,
即有:AC2=
400
3
+
100
3
-2×
20
3
3
×
10
3
3
×(-
1
2
)
=
700
3
,从而解得:AC=
10
21
3

(2)在△OAC中,∠AOC=120°,AC=x,
由余弦定理得,OA2+OC2-2OA•OC•cos120°=x2
又OC=BO,
所以OA2+OB2-2OA•OB•cos120°=x2 ①,…(7分)
在△OAB中,AB=10,∠AOB=60°
由余弦定理得,
OA2+OB2-2OA•OB•cos60°=100 ②,…(9分)
①+②得OA2+OB2=
x2+100
2

①-②得4OA•OB•cos60°=x2-100,即OA•OB=
x2-100
2
,…(10分)
又OA2+OB2≥2OA•OB,所以
x2+100
2
≥2x
x2-100
2
,即x2≤300,
又OA•OB=
x2-100
2
>0,即x2>100,所以10<x≤10
3
      …(12分)
点评:本题主要考查了解三角形的实际应用,考查了转化思想,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

判断下列各对直线的位置关系,如果相交,求出交点的坐标:
(1)l1:2x-3y=7,l2:4x+2y=1;
(2)l1:2x-6y+4=0,l2:y=
x
3
+
2
3

(3)l1:(
2
-1)x+y=3,l2:x+(
2
+1)y=2.

查看答案和解析>>

科目:高中数学 来源: 题型:

设平面α∩平面β=l,点A,B∈α,点C∈β,且A,B,C均不在直线l上,给出四个命题:
l⊥AB
l⊥AC
⇒α⊥β;②
l⊥AC
l⊥BC
⇒α⊥平面ABC;③
α⊥β
AB⊥BC
⇒l⊥平面ABC;④AB∥l⇒l∥平面ABC.
其中正确的命题是(  )
A、①与②B、②与③
C、①与③D、②与④

查看答案和解析>>

科目:高中数学 来源: 题型:

空间四边形ABCD,AC⊥BD,AC=2,BD=2
3
,E是AB的中点,F是CD的中点,则异面直线EF、AC所成的角为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

某超市为了解顾客的购物量及结算时间等信息,安排一名员工随机收集了在该超市购物的50位顾客的相关数据,如表所示:
一次购物量n(件)1≤n≤34≤n≤67≤n≤910≤n≤12n≥13
顾客数(人)x18103y
结算时间(分钟/人)0.511.522.5
已知这50位顾客中一次购物量少于10件的顾客占80%.
(Ⅰ)确定x与y的值;
(Ⅱ)若将频率视为概率,求顾客一次购物的结算时间X的分布列与数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知H是球O的直径AB上的一点,AH:HB=1:2,AH⊥平面α,H为垂足,α截球O所得截面的面积为π,则球O的表面积为(  )
A、
4
B、
2
C、
8
D、
16π
3

查看答案和解析>>

科目:高中数学 来源: 题型:

甲、乙两人玩抛掷正四面体玩具游戏,现由两枚大小相同,质地均匀的正四面体玩具,每枚玩具的各个面上分别写着数字3,4,5,7,甲先掷一枚玩具,朝下的面上的数字记 为a,乙后掷一枚玩具,朝下的面的数字记为b.
(1)求事件“a+b≥10”的概率;
(2)若游戏规定:当“a+b为奇数”时,甲 赢;当“a+b为偶数时”,乙赢,试问这个规定公平吗?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=mx2-x+1有两个零点分别属于区间(0,2),(2,3),则m的范围为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在数列{an}中,若a1=2,且对任意的正整数n都有a2n=an2,则a8的值为(  )
A、256B、128
C、64D、32

查看答案和解析>>

同步练习册答案