精英家教网 > 高中数学 > 题目详情
9.直角三角形面积为12,三个边成等差数列,则斜边长等于5$\sqrt{2}$.

分析 设c为斜边,a,b为直角边,利用直角三角形和等差数列的性质能求出斜边长.

解答 解:设c为斜边,a,b为直角边,
∵直角三角形三边长a、b、c成等差数列
∴2b=a+c  ①
a2+b2=c2  ②
∵面积为12
∴$\frac{1}{2}$ab=12  ③
联立①②③,解得:b=4$\sqrt{2}$,a=3$\sqrt{2}$,c=5$\sqrt{2}$,
∴斜边长等于5$\sqrt{2}$.
故答案为:5$\sqrt{2}$.

点评 本题考查直角三角形中斜边长的求法,是基础题,解题时要认真审题,注意等差数列的性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.在△ABC中,内角A、B、C的对边分别为a,b,c,b2+c2+bc-a2=0,则$\frac{asinBsin(B+C)}{bsinA}$的值为(  )
A.$\frac{\sqrt{3}}{2}$B.-$\frac{\sqrt{3}}{2}$C.$\frac{1}{2}$D.-$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知二次函数y=f(x),当x=2时有最大值16,它与x轴相交所得的线段长为8,求f(x)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.在△ABC中,角A、B、C对应的边分别为a、b、c,且A+B=$\frac{π}{3}$.
(1)求sinAcosB+cosAsinB的值;
(2)若a=1,b=2,求c的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.函数y=sin(ωx-$\frac{π}{4}$)的周期为T,且2<T<4,ω为正整数.
(1)求ω的值;
(2)设ω1是ω的最小值,用“五点法”作出函数y=sin(ω1x-$\frac{π}{4}$)在一个周期内的图象.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知向量$\overrightarrow{a}$,$\overrightarrow{b}$,$\overrightarrow{c}$满足$\overrightarrow{a}$$+\overrightarrow{b}+\overrightarrow{c}$=$\overrightarrow{0}$,且$\overrightarrow{a}$与$\overrightarrow{b}$的夹角的正切为-$\frac{1}{2}$,$\overrightarrow{b}$与$\overrightarrow{c}$的夹角的正切为-$\frac{1}{3}$,|$\overrightarrow{b}$|=2,则$\overrightarrow{a}$•$\overrightarrow{c}$的值为$\frac{4}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.设P=log35,Q=log52,R=log2(log32),则它们由小到大的顺序为R、Q、P.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.下列说法正确的个数是(  )
①∅=0;②∅={0};③∅={∅};④0∈∅;⑤0∈{0};⑥∅∈{∅};⑦∅?{∅}.
A.3B.4C.5D.6

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.对于函数f(x)=x2+x+1作x=h(t)的代换,则不改变函数f(x)的值域的代换是x=t-$\frac{1}{2}$.

查看答案和解析>>

同步练习册答案