精英家教网 > 高中数学 > 题目详情
16.已知集合A={x|x-2≥0},B={x|0<log2x<2},则A∩B={x|2≤x<4},.

分析 由题意求出集合A,由对数函数的性质求出集合B,由交集的运算求出A∩B.

解答 解:因为集合A={x|x-2≥0}={x|x≥2},
由0<log2x<2得log21<log2x<log24,解得1<x<4,
则B={x|0<log2x<2}={x|1<x<4},
所以A∩B={x|2≤x<4},
故答案为:{x|2≤x<4}.

点评 本题考查交集及其运算,以及对数函数的性质,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.命题?x∈R,tanx≠1,的否定是(  )
A.?x∉R,tanx≠1B.?x∈R,tanx=1C.?x0∉Rtanx0=1D.?x0∈R,tanx0=1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图,正方形ABCD和直角梯形BDEF所在的平面互相垂直,O为正方形ABCD的中心,AD=DE=2$\sqrt{2}$,EF∥BD,BD=2EF,DE⊥BD.
(Ⅰ)求证:OE∥平面BFC;
(Ⅱ)求二面角A-CF-B正弦值的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.${(x+\frac{1}{{\sqrt{x}}}-2)^5}$的展开式的常数项为88.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.在三棱锥P-ABC中,AB⊥BC,AB=6,$BC=2\sqrt{3}$,O为AC的中点,过C作BO的垂线,交BO、AB分别于R、D.若∠DPR=∠CPR,则三棱锥P-ABC体积的最大值为3$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知实数a,b满足ln(b+1)+a-3b=0,实数c,d满足$2d-c+\sqrt{5}=0$,则(a-c)2+(b-d)2的最小值为1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=x2-2ax+a.
(1)若对任意的实数x都有f(1+x)=f(1-x)成立,求实数a的值;
(2)若f(x)在区间[1,+∞)上为单调增函数,求实数a的取值范围;
(3)当x∈[-1,1]时,求函数f(x)的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.“微信抢红包”自2015年以来异常火爆,在某个微信群某次进行的抢红包活动中,若所发红包的总金额为10元,被随机分配为1.49元,1.81元,2.19元,3.41元,0.62元,0.48元,共6份,供甲、乙等6人抢,每人只能抢一次,则甲、乙二人抢到的金额之和不低于4元的概率是(  )
A.$\frac{1}{2}$B.$\frac{1}{4}$C.$\frac{1}{3}$D.$\frac{1}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.在如图的程序框图中,任意输入一次x(0≤x≤1)与y(0≤y≤1),则能输出“恭喜中奖!”的概率为(  )
A.$\frac{1}{3}$B.$\frac{1}{2}$C.$\frac{2}{3}$D.$\frac{3}{4}$

查看答案和解析>>

同步练习册答案