精英家教网 > 高中数学 > 题目详情
5.“微信抢红包”自2015年以来异常火爆,在某个微信群某次进行的抢红包活动中,若所发红包的总金额为10元,被随机分配为1.49元,1.81元,2.19元,3.41元,0.62元,0.48元,共6份,供甲、乙等6人抢,每人只能抢一次,则甲、乙二人抢到的金额之和不低于4元的概率是(  )
A.$\frac{1}{2}$B.$\frac{1}{4}$C.$\frac{1}{3}$D.$\frac{1}{6}$

分析 先求出基本事件总数n=C${\;}_{6}^{2}$=15,再求出其中金额之和大于等于4有可能的种数,由此能求出甲、乙二人抢到的金额之和不低于4元的概率.

解答 解:所发红包的总金额为10元,被随机分配为1.49元,1.81元,2.19元,3.41元,0.62元,0.48元,
共6份,供甲、乙等6人抢,每人只能抢一次,
基本事件总数n=C${\;}_{6}^{2}$=15,
其中金额之和大于等于4有可能有:
(0.62,3.41),(1.49,3.41),(1.81,2.19),(1.81,3.41),(2.19,3.41),共有5种,
∴甲、乙二人抢到的金额之和不低于4元的概率p=$\frac{5}{15}=\frac{1}{3}$.
故选:C.

点评 本题考查概率的求法,是基础题,解题时要认真审题,注意列举法的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

15.某大学舞蹈社团为了解新生对街舞的喜欢是否与性别有关,在全校一年级学生中进行了抽样调查,调查结果如表所示:
喜欢街舞不喜欢街舞合计
男生18426210
女生20050250
合计38476460
根据表中数据,求得K2的观测值k0=$\frac{460×(26×200-184×50)^{2}}{210×250×76×384}$,则至少有(  )%的把握认为对街舞的喜欢与性别有关.
参考数据:
P(K2≥k00.150.100.050.0250.0100.0050.001
k02.0722.7063.8415.0246.6357.87910.828
A.90B.95C.97.5D.99

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知集合A={x|x-2≥0},B={x|0<log2x<2},则A∩B={x|2≤x<4},.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数$f(x)=2{sin^2}({\frac{π}{4}+x})-\sqrt{3}cos2x$.
(1)求函数f(x)的单调递减区间;
(2)若关于x的方程f(x)=a在$x∈[{\frac{π}{4}\;,\;\;\frac{π}{2}}]$上时有两个相异实数解,求这两实数解的和;
(3)若不等式|f(x)-m|<2在$x∈[{\frac{π}{4}\;,\;\;\frac{π}{2}}]$上恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知椭圆C的两焦点分别为${F_1}({-2\sqrt{2},0}),{F_2}({2\sqrt{2},0})$,长轴长6.
(1)求椭圆C的标准方程;
(2)已知过点(0,2)且斜率为1的直线交椭圆C与A、B两点,求线段AB的长度.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.根据如图程序框图,当输入x为8时,输出的y等于2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知方程$\frac{{x}^{2}}{m-1}$+$\frac{{y}^{2}}{2-m}$=1表示焦点在y轴上的椭圆,则m的取值范围是1<m<$\frac{3}{2}$;若该方程表示双曲线,则m的取值范围是m<1或m>2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知数列{an}的前n项和为Sn,且满足a1=2,Sn-4Sn-1-2=0(n≥2,n∈Z).
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)令bn=log2an,Tn为{bn}的前n项和,求证$\sum_{i=1}^{n}$$\frac{1}{{T}_{k}}$<2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.按如图所示的流程图运算,若输入x=20,则输出的k=3.

查看答案和解析>>

同步练习册答案