分析 (I)利用数列递推关系、等比数列的通项公式即可得出.
(II)利用“裂项求和”方法、数列的单调性即可得出.
解答 解:(Ⅰ)当n≥3时,可得Sn-4Sn-1-2-(Sn-1-4Sn-2-2)=0(n≥2,n∈Z).∴an=4an-1,
又因为a1=2,代入表达式可得a2=8,满足上式.
所以数列{an}是首项为a1=2,公比为4的等比数列,故:an=2×4n-1=22n-1.
(Ⅱ)证明:bn=log2an=2n-1.
Tn=$\frac{n(1+2n-1)}{2}$=n2.
n≥2时,$\frac{1}{{T}_{n}}$=$\frac{1}{{n}^{2}}$<$\frac{1}{n(n-1)}$=$\frac{1}{n-1}-\frac{1}{n}$.
$\sum_{i=1}^{n}$$\frac{1}{{T}_{k}}$≤1+$(1-\frac{1}{2})+(\frac{1}{2}-\frac{1}{3})$+…+$(\frac{1}{n-1}-\frac{1}{n})$=2-$\frac{1}{n}$<2.
点评 本题考查了数列递推关系、等比数列的通项公式、“裂项求和”方法、数列的单调性,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{2}$ | B. | $\frac{1}{4}$ | C. | $\frac{1}{3}$ | D. | $\frac{1}{6}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-1,3) | B. | (-1,2) | C. | (1,3) | D. | (2,3) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{3}$ | B. | $\frac{1}{2}$ | C. | $\frac{2}{3}$ | D. | $\frac{3}{4}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com