精英家教网 > 高中数学 > 题目详情
已知圆M:x2+y2-4x+2y+c=0与y轴交于A,B两点,圆心为M,且∠AMB=90°.
(Ⅰ)求c的值;
(Ⅱ)若圆M与直线x+y-1=0交于E,F两点,且E,F的横坐标xE<yF,动点H到E,F两点的距离的比为λ(λ>0),求点H的轨迹方程,并说明它是什么图形.
考点:轨迹方程,直线和圆的方程的应用
专题:综合题,直线与圆
分析:(Ⅰ)利用△AMB为等腰直角三角形,可求c的值;
(Ⅱ)求出E,F的坐标,利用动点H到E,F两点的距离的比为λ(λ>0),可得轨迹方程.
解答: 解:(Ⅰ)圆M:x2+y2-4x+2y+c=0可化为(x-2)2+(y+1)2=5-c,
∵∠AMB=90°,
∴△AMB为等腰直角三角形,
∴5-c=8,
∴c=-3;
(Ⅱ)直线x+y-1=0代入x2+y2-4x+2y-3=0,∵xE<yF,∴E(0,1),F(4,-3).
设H(x,y),则
|HE|2=x2+(y-1)2,|HF|2=(x-4)2+(y+3)2
∵动点H到E,F两点的距离的比为λ(λ>0),
∴(1-λ2)x2+(1-λ2)y2+8λ2x-(2+6λ2)y+1-25λ2=0,
λ=1时,方程为x-y-3=0,轨迹为线段EF的垂直平分线,
λ≠1时,方程表示以(-
4λ2
1-λ2
1+3λ2
1-λ2
)为圆心,
4
2
λ
|1-λ2|
为半径的圆.
点评:本题考查直线与圆的位置关系,考查轨迹方程,考查小时分析解决问题的能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=lnx-a(x-1),g(x)=ex
(1)求函数f(x)的单调区间;
(2)过原点分别作函数f(x)与g(x)的切线,且两切线的斜率互为倒数,证明:a=0或1<a<2.

查看答案和解析>>

科目:高中数学 来源: 题型:

某花店每天以每枝10元的价格从农场购进若干支玫瑰花,并开始以每枝20元的价格出售,已知该花店的营业时间为8小时,若前7小时内所购进的玫瑰花没有售完,则花店对没卖出的玫瑰花以每枝5元的价格低价处理完毕(根据经验,1小时内完全能够把玫瑰花低价处理完毕,且处理完毕后,当天不再购进玫瑰花).该花店统计了100天内玫瑰花在每天的前7小时内的需求量n(单位:枝,n∈N*)(由于某种原因需求量频数表中的部分数据被污损而无法看清),制成如下表格(注:x,y∈N*;视频率为概率).
前7小时内的需求量n14151617
频数1020xy
(Ⅰ)若花店一天购进16枝玫瑰花,X表示当天的利润(单位:元),求X的分布列及数学期望;
(Ⅱ)若花店每天购进16枝玫瑰花所获得的平均利润比每天购进17枝玫瑰花所获得的平均利润大,求x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,AA1、BB1为圆柱OO1的母线,BC是底面圆O的直径,D、E分别是AA1、CB1的中点,AB=AC.
(Ⅰ)证明:DE∥平面ABC;
(Ⅱ)证明:平面B1DC⊥平面CBB1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=lnx,g(x)=
1
2
ax2-2x
(Ι)若曲线y=f(x)-g(x)在x=1与x=
1
2
处的切线相互平行,求实数a的值.
(Ⅱ)若函数y=f(x)-g(x)在(
1
3
,1)上单调递减,求实数a的取值范围.
(Ⅲ)设函数f(x)的图象C1与函数g(x)的图象C2交于P、Q两点,过线段PQ的中点作X轴的垂线分别交C1、C2于点M、N,判断C1在点M处的切线与C2在点N处的切线是否平行,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

为了了解青少年视力情况,某市从高考体检中随机抽取16名学生的视力进行调查,经医生用对数视力表检查得到每个学生的视力状况的茎叶图(以小数点前的一位数字为茎,小数点后的一位数字为叶)如图所示.
(1)若视力测试结果不低丁5.0,则称为“好视力”,求校医从这16人中随机选取3人,至多有1人是“好视力”的概率;
(2)以这16人的样本数据来估计该市所有参加高考学生的总体数据,若从该市参加高考的学生中任选3人,记ξ表示抽到“好视力”学生的人数,求ξ的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图四棱锥P-ABCD的底面ABCD为菱形,∠BAD=60°,Q为AD的中点.
(1)若PA=PD,求证:平面PQB⊥平面PAD;
(2)若PA=PD=AD,且平面PAD⊥平面ABCD,点M是线段PC的中点,求平面MBQ与平面ABCD所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

一名箭手进行射箭训练,箭手连续射2支箭,已知射手每只箭射中10环的概率是
1
4
,射中9环的概率是
1
4
,射中8环的概率是
1
2
,假设每次射箭结果互相独立.
(1)求该射手两次射中的总环数为18环的概率;
(2)求该箭手两次射中的总环数为奇数的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义在R上的函数f(x),满足f(-x)=-f(x),f(x-3)=f(x),当x∈(0,
3
2
)时,f(x)=ln(x2-2x+2),则函数f(x)在区间[-2,2]上的零点个数是
 

查看答案和解析>>

同步练习册答案