精英家教网 > 高中数学 > 题目详情
10.若$\frac{sinα-cosα}{sinα+cosα}$=$\frac{1}{2}$,则tan2α的值为-$\frac{3}{4}$.

分析 利用同角三角函数的基本关系求得tanα的值,再利用二倍角的正切公式求得tan2α的值.

解答 解:若$\frac{sinα-cosα}{sinα+cosα}$=$\frac{tanα-1}{tanα+1}$=$\frac{1}{2}$,则tanα=3,∴tan2α=$\frac{2tanα}{1{-tan}^{2}α}$=$\frac{6}{1-9}$=-$\frac{3}{4}$,
故答案为:-$\frac{3}{4}$.

点评 本题主要考查同角三角函数的基本关系,二倍角的正切公式的应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

20.若集合M={x∈N|x<6},N={x|(x-2)(x-9)<0},则 M∩N=(  )
A.{3,4,5}B.{x|2<x<6}C.{x|3≤x≤5}D.{2,3,4,5}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.函数y=ax-4+1(a>0,a≠1)的图象恒过定点P,P在幂函数f(x)的图象上,则f(x)=$\sqrt{x}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知a,b,c,d都是正实数,且a+b+c+d=1,求证:$\frac{a^2}{1+a}$+$\frac{b^2}{1+b}$+$\frac{c^2}{1+c}$+$\frac{d^2}{1+d}$≥$\frac{1}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.一个几何体的三视图都是边长为1的正方形,如图,则该几何体的体积是(  )
A.$\frac{1}{12}$B.$\frac{1}{3}$C.$\frac{\sqrt{2}}{4}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.等腰△ABC中,AC=BC=$\sqrt{5}$,AB=2,E、F分别为AC、BC的中点,将△EFC沿EF折起,使得C到P,得到四棱锥P-ABFE,且AP=BP=$\sqrt{3}$.
(1)求证:平面EFP⊥平面ABFE;
(2)求二面角B-AP-E的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.Sn是数列{an}的前n项和,若a4=7,an=an-1+2(n≥2,n∈N*),则S8=64.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.全集为R,已知数集A、B在数轴上表示如图所示,那么“x∉B”是“x∈A”的充分不必要条件.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.设集合A={(x,y)|y≥|x-l|},B={(x,y)|x-2y+2≥0),C={(x,y)|ax-y+a≥0},若(A∩B)⊆C,则实数a的最小值为(  )
A.-2B.一1C.1D.2

查看答案和解析>>

同步练习册答案