精英家教网 > 高中数学 > 题目详情
20.在平面直角坐标系中,已知A(-1,0),B(1,0),动点P(x,y)满足|PA|=a|PB(a>0
).
(1)试讨论动点P的轨迹C;
(2)当a=$\sqrt{2}$时,直线y=x+b与轨迹C交于两点M,N,若以线段MN为直径的圆恰好过坐标原点O,求b的值.

分析 (1)由题意得$\sqrt{(x+1)^{2}+{y}^{2}}$=a$\sqrt{(x-1)^{2}+{y}^{2}}$,从而化简即可;
(2)由题意知轨迹C的方程为x2+y2-6x+1=0,从而联立方程化简2x2+(2b-6)x+b2+1=0,从而结合$\overrightarrow{OM}$•$\overrightarrow{ON}$=0解得.

解答 解:(1)由题意得,
$\sqrt{(x+1)^{2}+{y}^{2}}$=a$\sqrt{(x-1)^{2}+{y}^{2}}$,(a>0)
即(a2-1)x2+(a2-1)y2-2(a2+1)x+(a2-1)=0,
当a2=1,即a=1时,方程为x=0,故轨迹C为y轴;
当a2≠1,即a>0且a≠1时,
方程可变形为
(x-$\frac{{a}^{2}+1}{{a}^{2}-1}$)2+y2=$\frac{4{a}^{2}}{({a}^{2}-1)^{2}}$,
故轨迹C为以($\frac{{a}^{2}+1}{{a}^{2}-1}$,0)为圆心,$\frac{2a}{|{a}^{2}-1|}$为半径的圆.
(2)由题意知轨迹C的方程为x2+y2-6x+1=0,
由$\left\{\begin{array}{l}{{x}^{2}+{y}^{2}-6x+1=0}\\{y=x+b}\end{array}\right.$得,
2x2+(2b-6)x+b2+1=0,
设M(x1,y1),N(x2,y2),则
$\left\{\begin{array}{l}{△=(2b-6)^{2}-8({b}^{2}+1)>0}\\{{x}_{1}+{x}_{2}=3-b}\\{{x}_{1}{x}_{2}=\frac{{b}^{2}+1}{2}}\end{array}\right.$,
∴-7<b<1,
∵以线段MN为直径的圆恰好过坐标原点O,
∴$\overrightarrow{OM}$•$\overrightarrow{ON}$=0,
即x1x2+y1y2=0,
故2x1x2+b(x1+x2)+b2=0,
即b2+1+b(3-b)+b2=0,
即b2+3b+1=0,
故b=$\frac{-3+\sqrt{5}}{2}$或b=$\frac{-3-\sqrt{5}}{2}$.

点评 本题考查了圆锥曲线与直线的位置关系的应用及平面向量的数量积的运算及应用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.某射击运动员进行射击训练,前三次射击在靶上的着弹点A、B、C刚好是边长为3cm的等边三角形的三个顶点.
(Ⅰ) 该运动员前三次射击的成绩(环数)都在区间[7.5,8.5)内,调整一下后,又连打三枪,其成绩(环数)都在区间[9.5,10.5)内.现从这6次射击成绩中随机抽取两次射击的成绩(记为a和b)进行技术分析.求事件“|a-b|>1”的概率.
(Ⅱ)第四次射击时,该运动员瞄准△ABC区域射击(不会打到△ABC外),则此次射击的着弹点距A、B、C的距离都超过1cm的概率为多少?(弹孔大小忽略不计)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.定义在R上的函数f(x)=$\left\{\begin{array}{l}{(1-2a)x+\frac{1}{2},x∈(-∞,1]}\\{alo{g}_{a}x,x∈(1,+∞)}\end{array}\right.$(其中a>0,且a≠1),对于任意x1≠x2都有$\frac{f({x}_{1})-f({x}_{2})}{{x}_{1}-{x}_{2}}$<0成立,则实数a的取值范围是(  )
A.[$\frac{3}{4}$,1)B.($\frac{1}{2}$,$\frac{3}{4}$]C.($\frac{1}{2}$,$\frac{3}{4}$)D.($\frac{1}{2}$,1)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.如果在一次实验中,测得数对(x,y)的四组数值分别是A(1,2),B(2,3),C(3,6),D(4,7),则y与x之间的回归直线方程是(  )
A.$\widehat{y}$=x+1.9B.$\widehat{y}$=1.8xC.$\widehat{y}$=0.95x+1.04D.$\widehat{y}$=1.05x-0.9

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知Sn为等差数列{an}的前n项和,且a2=3,S4=16,
(1)求数列{an}的通项公式;
(2)设bn=$\frac{2}{{a}_{n}•{a}_{n+1}}$(n∈N*),求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.在三角形ABC中,角A,B,C所对的边分别是a、b、c,且sin2B=sin2A+sin2C-sinAsinC.
(1)求角B的值;
(2)若b=$\sqrt{3}$,S△ABC=$\frac{\sqrt{3}}{2}$,求$\overrightarrow{BA}$•$\overrightarrow{BC}$及a+c的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.P,Q分别为直线3x+4y-12=0与6x+8y+6=0上任一点,则|PQ|的最小值为(  )
A.$\frac{9}{5}$B.3C.$\frac{18}{5}$D.6

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.设函数y=x3与y=2x+1的图象的交点为(x0,y0),则x0所在的区间是(  )
A.(0,1)B.(1,2)C.(2,3)D.(3,4)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知x,y满足$\left\{\begin{array}{l}{y≥x}\\{x+y≤2}\\{x≥a}\end{array}\right.$,且z=2x+y最大值是最小值的2倍,则a的值是(  )
A.2B.$\frac{3}{2}$C.$\frac{1}{11}$D.$\frac{1}{2}$

查看答案和解析>>

同步练习册答案