精英家教网 > 高中数学 > 题目详情
5.在三角形ABC中,角A,B,C所对的边分别是a、b、c,且sin2B=sin2A+sin2C-sinAsinC.
(1)求角B的值;
(2)若b=$\sqrt{3}$,S△ABC=$\frac{\sqrt{3}}{2}$,求$\overrightarrow{BA}$•$\overrightarrow{BC}$及a+c的值.

分析 (1)由正弦定理可得b2=a2+c2-ac,整体代入余弦定理可得cosB,可得B;
(2)由题意和三角形的面积公式可得ac,进而可得数量积,再由余弦定理整体可解a+c.

解答 解:(1)在△ABC中,∵在三角形ABC中sin2B=sin2A+sin2C-sinAsinC,
∴由正弦定理可得b2=a2+c2-ac,∴a2+c2-b2=ac,
∴由余弦定理可得cosB=$\frac{{a}^{2}+{c}^{2}-{b}^{2}}{2ac}$=$\frac{ac}{2ac}$=$\frac{1}{2}$,
由0<B<π可得B=$\frac{π}{3}$;
(2)∵S△ABC=$\frac{1}{2}$acsinB=$\frac{1}{2}$ac•$\frac{\sqrt{3}}{2}$=$\frac{\sqrt{3}}{2}$,∴ac=2,
∴$\overrightarrow{BA}$•$\overrightarrow{BC}$=accosB=2×$\frac{1}{2}$=1,
再由余弦定理可得b2=a2+c2-2accosB=(a+c)2-3ac,
∴(a+c)2=b2+3ac=9,∴a+c=3

点评 本题考查正余弦定理解三角形,涉及三角形的面积公式和向量的运算,属中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

15.如图,在四面体ABCD中,设G是CD的中点,则$\overrightarrow{AB}+\frac{1}{2}(\overrightarrow{BD}+\overrightarrow{BC})$等于(  )
A.$\overrightarrow{AD}$B.$\overrightarrow{BG}$C.$\overrightarrow{CD}$D.$\overrightarrow{AG}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知函数f(x)=sinx(x∈R),则下列四个说法:
①函数g(x)=$\frac{{f}^{2}(x)-f(x)}{f(x)-1}$是奇函数;
②函数f(x)满足:对任意x1,x2∈[0,π]且x1≠x2都有f($\frac{{x}_{1}+{x}_{2}}{2}$)<$\frac{1}{2}$[f(x1)+f(x2)];
③若关于x的不等式f2(x)-f(x)+a≤0在R上有解,则实数a的取值范围是(-∞,$\frac{1}{4}$];
④若关于x的方程3-2cos2x=f(x)-a在[0,π]恰有4个不相等的解x1,x2,x3,x4;则实数a的取值范围是[-1,-$\frac{7}{8}$),且x1+x2+x3+x4=2π;
其中说法正确的序号是③④.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知函数f(x)=sin(x-α)+2cosx,(其中α为常数),给出下列五个命题:
①存在α,使函数f(x)为偶函数;
②存在α,使函数f(x)为奇函数;
③函数f(x)的最小值为-3;
④若函数f(x)的最大值为h(α),则h(α)的最大值为3;
⑤当α=$\frac{π}{6}$时,(-$\frac{π}{3}$,0)是函数f(x)的一个对称中心.
其中正确的命题序号为①④⑤(把所有正确命题的选号都填上)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.在平面直角坐标系中,已知A(-1,0),B(1,0),动点P(x,y)满足|PA|=a|PB(a>0
).
(1)试讨论动点P的轨迹C;
(2)当a=$\sqrt{2}$时,直线y=x+b与轨迹C交于两点M,N,若以线段MN为直径的圆恰好过坐标原点O,求b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.某校羽毛球小组有男学生A,B,C和女学生X,Y,Z共6人,其所属年级如下:
一年级二年级三年级
男生ABC
女生XYZ
现从这6名学生中随机选出2人参加羽毛球比赛(每人被选到的可能性相同).
(1)共有几种不同的选法?用表中字母列举出来;
(2)设M为事件“选出的2人性别相同”,求事件M发生的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知数列{an},a1=a(a∈R),an+1=$\frac{2{a}_{n}+1}{{a}_{n}+2}$(n∈N*).
(1)若数列{an}从第二项起每一项都大于1,求实数a的取值范围;
(2)若a=-3,记Sn是数列{an}的前n项和,证明:Sn<n+$\frac{6}{7}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知实数a∈[0,10],那么方程x2-ax+9=0有实数解的概率是$\frac{2}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.设数列{an}的前n项和为Sn,已知a1=1,Sn=$\frac{{({n+1})}}{2}{a_n}$,n∈N*
(Ⅰ)求数列{an}的通项公式an
(Ⅱ)若数列{bn}满足:对任意的正整数n,都有a1b1+a2b2+…+anbn=(n-1)•2n+1,求数列$\left\{{\frac{S_n}{b_n}}\right\}$的最大项.

查看答案和解析>>

同步练习册答案