精英家教网 > 高中数学 > 题目详情
8.如图,在△ABC中,M为BC上不同于B,C的任意一点,点N满足$\overrightarrow{AN}=2\overrightarrow{NM}$.若$\overrightarrow{AN}=x\overrightarrow{AB}+y\overrightarrow{AC}$,则x2+9y2的最小值为$\frac{2}{5}$.

分析 不妨设$\overrightarrow{BM}$=λ$\overrightarrow{BC}$,0<λ<1,根据向量的加减的几何意义可得x=$\frac{2-2λ}{3}$,y=$\frac{2λ}{3}$,代入得到x2+9y2=$\frac{40}{9}$(λ-$\frac{1}{10}$)2+$\frac{2}{5}$,即可求出最值.

解答 解:不妨设$\overrightarrow{BM}$=λ$\overrightarrow{BC}$,0<λ<1,
∴$\overrightarrow{AN}$=$\frac{2}{3}$$\overrightarrow{AM}$=$\frac{2}{3}$($\overrightarrow{AB}$+$\overrightarrow{BM}$)=$\frac{2}{3}$$\overrightarrow{AB}$+$\frac{2λ}{3}$$\overrightarrow{BC}$=$\frac{2}{3}$$\overrightarrow{AB}$+$\frac{2λ}{3}$($\overrightarrow{AC}$-$\overrightarrow{AB}$)=$\frac{2-2λ}{3}$$\overrightarrow{AB}$+$\frac{2λ}{3}$$\overrightarrow{AC}$,
∵$\overrightarrow{AN}=x\overrightarrow{AB}+y\overrightarrow{AC}$,
∴x=$\frac{2-2λ}{3}$,y=$\frac{2λ}{3}$,
∴x2+9y2=$\frac{(2-2λ)^{2}}{9}$+4λ2=$\frac{40}{9}$λ2-$\frac{8λ}{9}$+$\frac{4}{9}$=$\frac{40}{9}$(λ-$\frac{1}{10}$)2+$\frac{2}{5}$,
当λ=$\frac{1}{10}$时,x2+9y2有最小值,最小值为$\frac{2}{5}$,
故答案为:$\frac{2}{5}$.

点评 本题考查了向量的加减的几何意义以及二次函数的性质,属于中档题

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.已知复数z满足z(2+i)=3+2i,则|z|=(  )
A.$\sqrt{3}$B.$\sqrt{13}$C.$\frac{\sqrt{65}}{5}$D.$\sqrt{15}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.甲、乙两人可参加A,B,C三个不同的学习小组,若每人必须参加并且仅能参加一个学习小组,则两人参加同一个学习小组的概率为(  )
A.$\frac{1}{3}$B.$\frac{1}{4}$C.$\frac{1}{5}$D.$\frac{1}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.函数$f(x)=sin(ωx+\frac{π}{6})(ω>0)$与g(x)=sin(2x+θ)对称轴完全相同,将f(x)图象向右平移$\frac{π}{3}$个单位得到h(x),则h(x)的解析式是h(x)=-cos2x.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数$f(x)=xlnx-\frac{1}{2}a{x^2}-x+3{a^3}-4{a^2}-a+2(a∈{R})$存在两个极值点.
(Ⅰ)求实数a的取值范围;
(Ⅱ)设x1和x2分别是f(x)的两个极值点且x1<x2,证明:${x_1}{x_2}>{e^2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.如图,在梯形ABCD中,AB∥DC,AD=AB=BC=1,$∠ADC=\frac{π}{3}$,平面ACFE⊥平面ABCD,四边形ACFE是矩形,AE=1,点M在线段EF上.
(1)当$\frac{FM}{EM}$为何值时,AM∥平面BDF?证明你的结论;
(2)求二面角B-EF-D的平面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知f(x)是定义在R上的奇函数,满足f(x)+f(2-x)=0,且当x∈[0,1)时,f(x)=ln(ex+$\frac{x}{x+1}$),则函数g(x)=f(x)+$\frac{1}{3}$x在区间[-6,6]上的零点个数是(  )
A.4B.5C.6D.7

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知集合A={x∈Z|(2x+3)(x-3)<0},B={x|y=$\sqrt{1-lnx}$},则A∩B=(  )
A.(0,e]B.{0,e}C.{1,2}D.(1,2)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.根据“2015年国民经济和社会发展统计公报”中公布的数据,从2011 年到2015 年,我国的第三产业在GDP中的比重如下:
年份20112012201320142015
年份代码x12345
第三产业比重y(%)44.345.546.948.150.5
(1)在所给坐标系中作出数据对应的散点图;
(2)建立第三产业在GDP中的比重y关于年份代码x的回归方程;
(3)按照当前的变化趋势,预测2017 年我国第三产业在GDP中的比重.
附注:回归直线方程$\widehaty=\widehata+\widehatbx$中的斜率和截距的最小二乘估计公式分别为:$\widehatb=\frac{{\sum_{i=1}^n{{x_i}{y_i}-n\overline x\overline y}}}{{\sum_{i=1}^n{x_i^2}-n{{(\overline x)}^2}}}=\frac{{\sum_{i=1}^n{({x_i}-\overline x)({y_i}-\overline y})}}{{\sum_{i=1}^n{{{({x_i}-\overline x)}^2}}}}$,$\widehata=\overline y-\widehatb\overline x$.

查看答案和解析>>

同步练习册答案