精英家教网 > 高中数学 > 题目详情
已知函数f(x)=
1-x
x
+lnx,求f(x)在[
1
2
,2]上的最大值和最小值.
考点:利用导数求闭区间上函数的最值
专题:计算题,导数的综合应用
分析:f′(x)=
1-x
x
+lnx=
x-1
x2
,从而确定函数的单调性,进而求函数的最值.
解答: 解:∵f(x)=
1-x
x
+lnx,
∴f′(x)=
1-x
x
+lnx=
x-1
x2

故f(x)在[
1
2
,1]上单调递减,在[1,2]单调递增,
又∵f(
1
2
)=1-ln2,f(2)=ln2-
1
2

f(1)=0,
f(
1
2
)-f(2)=
3
2
-2ln2>0,
故fmax(x)=1-ln2,fmin(x)=0.
点评:本题考查了导数的综合应用,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知在△ABC中,已知tan
A+B
2
=sinC,求sin
C
2
的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=ex+x2-x;
(1)求f(x)的单调区间;
(2)若g(x)与f(x)的图象关于y轴对称,写出g(x)的表达式,并比较g(x)与f(x)的大小;
(3)若f(x1)=f(x2),求证:x1+x2<0.

查看答案和解析>>

科目:高中数学 来源: 题型:

直线l:y=m(m为实常数)与曲线E:y=|lnx|的两个交点A、B的横坐标分别为x1、x2,且x1<x2,曲线E在点A、B处的切线PA、PB与y轴分别交于点M、N,有下面4个结论:
①|
MN
|=2;
②三角形PAB可能为等腰三角形;
③若直线l与y轴的交点为Q,则|PQ|=1;
④是函数g(x)=x2+lnx的零点时,|
AO
|(O为坐标原点)取得最小值.
其中正确结论有
 
.(写出所有正确结论的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知AO是△ABC边BC的中线,求证:|AB|2+|AC|2=2(|AO|2+|OC|2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)的左焦点F(-1,0),离心率为
2
2

(Ⅰ)求椭圆C的标准方程;
(Ⅱ)设P(1,0),过P的直线l交椭圆C于A,B两点,求
OA
OB
的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

线段AD、CF为异面直线,点B、E为AC,DF中点,若AD=2,CF=4,AD,CF所成的角为60°,求BE长.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知三棱柱ABC-A1B1C1的直观图和三视图如图所示,其主视图BB1A1A和侧视图A1ACC1均为矩形,其中AA1=4.俯视图△A1B1C1中,B1C1=4,A1C1=3,A1B1=5,D是AB的中点.
(1)求证:AC1∥平面CDB1
(2)求异面直线AC1与B1C所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,a,b,c分别为角A,B,C所对的边,若(a+b+c)(sinA+sinB-sinC)=asinB,又sinA=
3
2
,则sinB=(  )
A、
1
2
B、
3
2
C、
2
2
3
D、
2
6
-1
6

查看答案和解析>>

同步练习册答案