精英家教网 > 高中数学 > 题目详情
已知函数f(x)=ax3+b,其图象在点P处的切线为l:y=4x-4,点P的横坐标为2(如图).求直线l、直线x=0、直线y=0以及f(x)的图象在第一象限所围成区域的面积.

【答案】分析:先利用导数求出该点的斜率,然后求出切点的坐标,得出函数的解析式,最后根据定积分即可求出直线l、直线x=0、直线y=0以及f(x)的图象在第一象限所围成区域的面积.
解答:解:f′(x)=3ax2.∴f′(2)=12a,
切线的斜率 k=12a,∵切线方程为:y=4x-4,∴切点坐标为了(2,4)
∴12a=4,∴a=,且f(2)=ax3+b=4,∴b=

直线l:y=4x-4与x轴的交点的横坐标为1,
所以直线l、直线x=0、直线y=0以及f(x)的图象在第一象限所围成区域的面积为:

=
=+++-2×22-(+-2)=2.
点评:本题主要考查了利用导数研究曲线上某点切线方程,同时考查了定积分,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
a-x2
x
+lnx  (a∈R , x∈[
1
2
 , 2])

(1)当a∈[-2,
1
4
)
时,求f(x)的最大值;
(2)设g(x)=[f(x)-lnx]•x2,k是g(x)图象上不同两点的连线的斜率,否存在实数a,使得k≤1恒成立?若存在,求a的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•海淀区二模)已知函数f(x)=a-2x的图象过原点,则不等式f(x)>
34
的解集为
(-∞,-2)
(-∞,-2)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a|x|的图象经过点(1,3),解不等式f(
2x
)>3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a•2x+b•3x,其中常数a,b满足a•b≠0
(1)若a•b>0,判断函数f(x)的单调性;
(2)若a=-3b,求f(x+1)>f(x)时的x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a-2|x|+1(a≠0),定义函数F(x)=
f(x)   ,  x>0
-f(x) ,    x<0
 给出下列命题:①F(x)=|f(x)|; ②函数F(x)是奇函数;③当a<0时,若mn<0,m+n>0,总有F(m)+F(n)<0成立,其中所有正确命题的序号是
 

查看答案和解析>>

同步练习册答案