精英家教网 > 高中数学 > 题目详情
14.为得到函数y=sin2x的图象,要将函数$y=sin({2x+\frac{π}{4}})$的图象向右平移至少$\frac{π}{8}$个单位.

分析 利用函数y=Asin(ωx+φ)的图象变换规律,得出结论.

解答 解:将函数y=sin(2x+$\frac{π}{4}$)的图象向右平移$\frac{π}{8}$单位,即可得到函数y=sin[2(x-$\frac{π}{8}$)+$\frac{π}{4}$]=sin2x的图象,
故答案是:$\frac{π}{8}$.

点评 本题主要考查函数y=Asin(ωx+φ)的图象变换规律,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.已知集合A={x|-4<x<1},B={x|($\frac{1}{2}$)x≥2}.
(1)求A∩B,A∪B;
(2)设函数f(x)=$\sqrt{lo{g}_{4}(2x-3)}$的定义域为C,求(∁RA)∩C.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.函数f(x)=ex-2x,x∈R有(  )
A.极大值4+ln4B.极大值2+2ln2C.极小值4-ln4D.极小值2-2ln2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.设x∈R,则“x-2<1”是“x2+x-2>0”的(  )
A.充分而不必要条件B.必要而不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.设O为坐标原点,已知椭圆C1:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{\sqrt{3}}{2}$,抛物线C2:x2=-ay的准线方程为y=$\frac{1}{2}$.
(Ⅰ)求椭圆C1和抛物线C2的方程;
(Ⅱ)设过定点M(0,2)的直线l与椭圆C1交于不同的两点P,Q,若O在以PQ为直径的圆上,求直线l的斜率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知{an}是各项为正数的等比数列,{bn}是等差数列,且a1=b1=1,b2+b3=2a3,a5-3b2=7.
(1)求{an}和{bn}的通项公式;
(2)设cn=anbn,n∈N*,求数列{cn}的前n项和为Sn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.设椭圆C1:$\frac{{x}^{2}}{{a}^{2}}$$+\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{\sqrt{3}}{2}$,F1,F2是椭圆的两个焦点,P是椭圆C上的任意一点,且△PF1F2的周长为4+2$\sqrt{3}$.
(1)求椭圆C1的方程;
(2)设椭圆C1的左、右顶点分别为A、B,过椭圆C1上的一点D作x轴的垂线交x轴于点E,若C点满足$\overrightarrow{AB}$⊥$\overrightarrow{BC}$,$\overrightarrow{AD}$∥$\overrightarrow{OC}$,连接AC交DE于点P,求证:PD=PE.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.设f(x)是定义域在R上的偶函数,它的图象关于直线x=2对称,已知x∈[-2,2]时,函数f(x)=-x2+1,则x∈[-6,-2]时,f(x)等于(  )
A.-(x+4)2+1B.-(x-4)2+1C.-(x-4)2-1D.-(x+4)2-1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.设f(x)=a(x-5)2+6lnx,其中a∈R,曲线y=f(x)在点(1,f(1))处的切线斜率为2.
(1)确定a的值;
(2)求函数f(x)的单调区间与极值.

查看答案和解析>>

同步练习册答案