精英家教网 > 高中数学 > 题目详情
14.设不等式组$\left\{\begin{array}{l}{2x+y-4≤0}\\{x-y≥0}\\{y≥0}\end{array}\right.$表示的平面区域为D,点A(2,0),点B(1,0),在区域D内随机取一点M,则点M满足|MA|≥$\sqrt{2}$|MB|的概率是(  )
A.$\frac{5π}{16}$B.$\frac{3π}{16}$C.$\frac{3π}{8}$D.$\frac{π}{4}$

分析 作出不等式组对应的区域,利用几何概型的概率公式,即可得到结论.

解答 解:设M(x,y),
∵|MA|≥$\sqrt{2}$|MB|,
∴(x-2)2+y2≥2(x-1)2+2y2
∴x2+y2≤2,
联立$\left\{\begin{array}{l}{2x+y-4=0}\\{x-y=0}\end{array}\right.$,
解得x=y=$\frac{4}{3}$,
如图所示,三角形的高为$\frac{4}{3}$,边OA=2,
∴S△OBC=$\frac{1}{2}$×2×$\frac{4}{3}$=$\frac{4}{3}$,
圆落在三角形内的面积为S扇形=$\frac{1}{8}$π×2=$\frac{π}{4}$,
∴点M满足|MA|≥2|MO|的概率是P=$\frac{{S}_{扇形}}{{S}_{三角形OBC}}$=$\frac{\frac{π}{4}}{\frac{4}{3}}$=$\frac{3π}{16}$,
故选:B.

点评 本题主要考查了几何概型的求解,还考查了线性规划的知识,同时考查了数形结合的思想,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

6.某几何体的三视图如图所示(单位:cm),则该几何体的表面积是80cm2,体积是40cm3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.98和196的最大公约数是98.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.如图,矩形OABC内,阴影部分是由直线y=x-4,曲线y=$\sqrt{2x}$以及x轴围成,在矩形内随机取一点,则此点取自阴影部分的概率是(  )
A.$\frac{7}{12}$B.$\frac{5}{12}$C.$\frac{1}{2}$D.$\frac{\sqrt{2}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.若C7x=C65+C64,则x=5或2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.在△ABC中,角A,B,C的对边分别为a,b,c,且满足asinC=$\sqrt{3}$ccosA.
(1)求角A的大小;
(2)若c=4,a=5$\sqrt{3}$,求cos(2C-A)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.若a,b∈R,且满足条件(a+1)2+(b-1)2<1,则函数y=log(a+b)x是增函数的概率是$\frac{1}{4}$-$\frac{1}{2π}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.计算∫${\;}_{-π}^{π}$(1+sinx)dx的结果为2π.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.不等式|x+2|>3的解集是(  )
A.(-∞,-5)∪(1,+∞)B.(-5,1)C.(-∞,-1)∪(5,+∞)D.(-1,5)

查看答案和解析>>

同步练习册答案