精英家教网 > 高中数学 > 题目详情
命题p:?x∈R,使得f(x)=x,则?p为
 
考点:命题的否定
专题:简易逻辑
分析:根据特称命题的否定是全称命题,即可得到结论.
解答: 解:∵命题p是特称命题,
∴特称命题的否定是全称命题,
即¬p:?x∈R,都有f(x)≠x,
故答案为:?x∈R,都有f(x)≠x.
点评:本题主要考查含有量词的命题的否定,比较基础.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知g(x)=-x2-4,f(x)为二次函数,满足f(x)+g(x)+f(-x)+g(-x)=0,且f(x)在[-1,2]上的最大值为7,则f(x)=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若实数x,y满足
2x-y≥0
y≥x
y≥-x+b
且z=2x+y的最小值为4,则实数b的值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

对于函数f(x)=ax3,(a≠0)有以下说法:
①x=0是f(x)的极值点.
②当a<0时,f(x)在(-∞,+∞)上是减函数.
③若a>0且x≠0则f(x)+f(
1
x
)
有最小值是2a.
④f(x)的图象与(1,f(1))处的切线必相交于另一点.
其中说法正确的序号是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设△ABC的内角A,B,C所对边的长分别为a,b,c,则下列命题正确的是
 
(写出所有正确命题的编号).
①若ab>c2,则C<
π
3
;    
②若(a+b)c<2ab,则C>
π
2

③若a3+b3=c3,则C<
π
2

④若a+b>2c,则C<
π
3

⑤若(a2+b2)c2<2a2b2,则C>
π
3

查看答案和解析>>

科目:高中数学 来源: 题型:

给出下列四个命题:
①函数f(x)=-e-x+ex有最小值2;
②函数f(x)=4sin(2x-
π
3
)的图象关于点(
π
6
,0)对称;
③若“p且q”为假命题,则p、q为假命题;
④已知定义在R上的可导函数y=f(x)满足:对?x∈R都有f(-x)=-f(x)成立,
若当x>0时,f′(x)>0,则当x<0时,f′(x)>0
其中正确命题的序号是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知实数x,y满足
x-y+6≥0
x+y≥0
x≤3.
,若z=ax+y的最大值为3a+9,最小值为3a-3,则实数a的取值范围为(  )
A、[-1,1]
B、[-1,2]
C、[2,3]
D、[-1,3]

查看答案和解析>>

科目:高中数学 来源: 题型:

在下列四个选项中,说法错误的是(  )
A、若A是B的必要不充分条件,则非B也是非A的必要不充分条件
B、“
a>0
△=b2-4ac≤0
”是“一元二次不等式ax2+bx+c≥0的解集为R”的充要条件
C、“x≠1”是“x2≠1”的充分不必要条件
D、“x≠0”是“x+|x|>0”的必要不充分条件

查看答案和解析>>

科目:高中数学 来源: 题型:

过双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)左焦点F1(-c,0)作倾斜角为30°的直线L交双曲线右支于点P,线段PF1的中点在y轴上,双曲线右焦点F2(c,0)到双曲线的渐近线的距离是2.
(Ⅰ)求双曲线的方程;   
(Ⅱ)设以F1F2为直径的圆与直线L交于点Q,过右焦点F2和点Q的直线L′与双曲线交于A、B两点,求弦|AB|的长度.

查看答案和解析>>

同步练习册答案