精英家教网 > 高中数学 > 题目详情
8.抛物线y=$\frac{1}{2}$x2被直线y=x+4截得的线段的长度是(  )
A.$\sqrt{2}$B.2$\sqrt{6}$C.$\sqrt{6}$D.6$\sqrt{2}$

分析 联立抛物线与直线方程,求出交点坐标,代入两点之间距离公式,可得答案.

解答 解:由$\left\{\begin{array}{l}y=\frac{1}{2}{x}^{2}\\ y=x+4\end{array}\right.$得:$\left\{\begin{array}{l}x=-2\\ y=2\end{array}\right.$或$\left\{\begin{array}{l}x=4\\ y=8\end{array}\right.$,
即抛物线y=$\frac{1}{2}$x2与直线y=x+4交点坐标为A(-2,2),B(4,8),
故抛物线y=$\frac{1}{2}$x2被直线y=x+4截得的线段AB的长度|AB|=$\sqrt{(4+2)^{2}+(8-2)^{2}}$=6$\sqrt{2}$,
故选:D.

点评 本题考查的知识点是直线与圆锥曲线的位置关系,两点之间的距离公式,难度中档.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

18.已知函数f(x)=$\left\{{\begin{array}{l}{|{{{log}_2}x}|,\;0<x≤4}\\{{x^2}-12x+34\;,x>4}\end{array}}$,若方程f(x)=t,(t∈R)有四个不同的实数根x1,x2,x3,x4,则x1x2x3x4的取值范围为(32,34).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.某位同学在2015年5月进行社会实践活动,为了对白天平均气温与某奶茶店的某种饮料销量之间的关系进行分析研究,他分别记录了5月1日至5月5日的白天平均气温x(°C)与该奶茶店的这种饮料销量y(杯),得到如下数据:
日    期5月1日5月2日5月3日5月4日5月5日
平均气温x(°C)91012118
销量y(杯)2325302621
(1)若从这五组数据中随机抽出2组,求抽出的2组数据不是相邻2天数据的概率;
(2)请根据所给五组数据,求出y关于x的线性回归方程$\stackrel{∧}{y}$=$\stackrel{∧}{b}$x+$\stackrel{∧}{a}$.
(参考公式:$\stackrel{∧}{b}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}{b}$$\overline{x}$)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.直线x+2ay-1=0与直线(a-1)x-ay-1=0平行,则a的值是0或$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知圆C:(x-1)2+(y-2)2=2,点P坐标为(2,-1),过点P作圆C的切线,切点为A、B.
(1)求直线PA,PB的方程;    
(2)求切线长|PA|的值;
(3)求直线AB的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.过抛物线y2=4x的焦点的直线与抛物线交于A,B两个不同的点,当|AB|=6时,△OAB(O为坐标原点)的面积是(  )
A.$\sqrt{10}$B.$\sqrt{6}$C.$\sqrt{3}$D.$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.设△ABC内角A,B,C的对边分别为a,b,c,已知A=60°,b=16,S△ABC=220$\sqrt{3}$,则a的值是(  )
A.20$\sqrt{6}$B.75C.51D.49

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知圆x2+y2=4,圆外有一点M(3,3),点N在圆上运动,O为坐标原点,以线段OM,ON为邻边作平行四边形MONP,则P的轨迹方程是(x-3)2+(y-3)2=4(点($3+\sqrt{2},3+\sqrt{2}$)和($3-\sqrt{2},3-\sqrt{2}$))除外.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.若菱形的周长为l,面积为S,则菱形的较小内角的正弦为$\frac{8s}{{l}^{2}}$.

查看答案和解析>>

同步练习册答案