精英家教网 > 高中数学 > 题目详情
7.已知空间四边形ABCD中,AB=BD=AD=2,BC=1,CD=$\sqrt{3}$,若二面角A-BD-C的取值范围为[$\frac{π}{4}$,$\frac{2π}{3}$],则该几何体的外接球表面积的取值范围为[$\frac{28π}{3},\frac{76π}{3}$].

分析 设H为等边△ADB的中心,DB中点O1为△BCD外接圆的圆心,
过H作面ABD的垂线,过O1作面DCB的垂线,两垂线的交点O为空间四边形ABCD外接球球心,
过O1在面DCB内作DB的垂线交△BCD外接圆于E,F,过点O,E,F作圆的截面圆,则点A在其圆周上;
易得∠AO1E面角A-BD-C的平面角.在Rt△OO1H中,可得$O{O}_{1}=\frac{{O}_{1}H}{cos∠H{O}_{1}O}$,外接球的半径R=$\sqrt{O{{O}_{1}}^{2}+{O}_{1}{B}^{2}}$∈[$\sqrt{\frac{7}{3}}$.$\sqrt{\frac{19}{3}}$],即可求解

解答 解:因为CD2+CB2=DB2,所以△DCB为Rt△,
设H为等边△ADB的中心,DB中点O1为△BCD外接圆的圆心,
过H作面ABD的垂线,过O1作面DCB的垂线,两垂线的交点O为空间四边形ABCD外接球球心,
过O1在面DCB内作DB的垂线交△BCD外接圆于E,F,过点O,E,F作圆的截面圆,则点A在其圆周上;
易得∠AO1E面角A-BD-C的平面角.
在Rt△OO1H中,可得$O{O}_{1}=\frac{{O}_{1}H}{cos∠H{O}_{1}O}$
∵二面角A-BD-C的取值范围为[$\frac{π}{4}$,$\frac{2π}{3}$],即cos∠HO1O$∈[\frac{1}{2},1]$.
∵$H{O}_{1}=\frac{2}{3}×\frac{\sqrt{3}}{2}×2=\frac{2\sqrt{3}}{3}$∴$O{O}_{1}∈[\frac{2\sqrt{3}}{3},\frac{4\sqrt{3}}{3}$]
外接球的半径R=$\sqrt{O{{O}_{1}}^{2}+{O}_{1}{B}^{2}}$∈[$\sqrt{\frac{7}{3}}$.$\sqrt{\frac{19}{3}}$]
则该几何体的外接球表面积的取值范围为[$\frac{28π}{3},\frac{76π}{3}$]
故答案为:[$\frac{28π}{3},\frac{76π}{3}$]

点评 本题考查了三棱锥的外接球的表面积,解题的关键是找到球心,求出半径,考查了转化思想、计算能力,属于中档题

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.已知椭圆$\frac{{x}^{2}}{2}$+$\frac{{y}^{2}}{4}$=1两焦点分别为F1、F2,P是椭圆在第一象限弧上一点,并满足$\overrightarrow{P{F}_{1}}$•$\overrightarrow{P{F}_{2}}$=1,过P作两条直线PA、PB分别交椭圆于A、B两点.
(1)求P点坐标;
(2)若直线AB的斜率为$\sqrt{2}$,求△PAB面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.将点P(-2,2)变换为P′(-6,1)的伸缩变换公式为$\left\{\begin{array}{l}{x′=3x}\\{y′=\frac{1}{2}y}\end{array}\right.$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.某个几何体的三视图如图所示,则该几何体的表面积为(  )
A.24+πB.24+2πC.20+πD.20+2π

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.如图,已知$\overrightarrow{AB}$=a,$\overrightarrow{AC}$=b,$\overrightarrow{BD}$=3 $\overrightarrow{DC}$,用$\vec a$,$\vec b$表示$\overrightarrow{AD}$,则$\overrightarrow{AD}$=(  )
A.$\vec a$+$\frac{3}{4}$$\vec b$B.$\frac{1}{4}$ $\vec a$+$\frac{3}{4}$$\vec b$C.$\frac{1}{4}$ $\vec a$+$\frac{1}{4}$$\vec b$D.$\frac{3}{4}$ $\vec a$+$\frac{1}{4}$$\vec b$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.在如图所示的算法流程图中,输出S的值为(  )
A.51B.52C.53D.54

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.22015被9除所得的余数是(  )
A.4B.5C.7D.8

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.对某校高二年级某班63名同学,在一次期末考试中的英语成绩作统计,得到如下的列联表:
不低于120分(优秀)低于120分(非优秀)
1221
1119
P(K2≥k)0.100.050.025
k2.7063.8415.024
附:${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$,参照附表,得到的正确结论是(  )
A.在犯错误的概率不超过0.01的前提下认为“该班学生英语成绩优秀与性别有关”
B.在犯错误的概率不超过0.05的前提下认为“该班学生英语成绩优秀与性别有关”
C.没有90%以上的把握认为“该班学生英语成绩优秀与性别有关”
D.有90%以上的把握认为“该班学生英语成绩优秀与性别有关”

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.两个分类变量X与Y有关系的可能性越大,随机变量K2的值(  )
A.越大B.越小
C.不变D.可能越大也可能越小

查看答案和解析>>

同步练习册答案