精英家教网 > 高中数学 > 题目详情
9.设e1、e2分别是具有公共焦点F1、F2的椭圆和双曲线的离心率,P是两曲线的一个公共点,O是F1F2的中点,且满足|PO|=|OF2|,则$\frac{{e}_{1}{e}_{2}}{\sqrt{{{e}_{1}}^{2}+{{e}_{2}}^{2}}}$=(  )
A.$\frac{1}{3}$B.$\frac{1}{2}$C.$\frac{\sqrt{2}}{2}$D.$\sqrt{2}$

分析 设出椭圆的长半轴,双曲线的实半轴,它们的半焦距,利用椭圆的和双曲线的定义可得焦半径,写出两个曲线的离心率,即可得到结果.

解答 解:设椭圆的长半轴是a1,双曲线的实半轴是a2,它们的半焦距是c.
并设|PF1|=m,|PF2|=n,m>n,
根据椭圆的和双曲线的定义可得m+n=2a1,m-n=2a2
解得m=a1+a2,n=a1-a2
∵|PO|=|OF2|,∴PF1⊥PF2
由勾股定理得|PF1|2+|PF2|2=|F1F2|2
∴(a1+a22+(a1-a22=(2c)2
化简可得a12+a22=2c2
∴$\frac{1}{{{e}_{1}}^{2}}$$+\frac{1}{{{e}_{2}}^{2}}$=2
∴$\frac{{e}_{1}{e}_{2}}{\sqrt{{{e}_{1}}^{2}+{{e}_{2}}^{2}}}$=$\sqrt{\frac{1}{\frac{1}{{{e}_{1}}^{2}}+\frac{1}{{{e}_{2}}^{2}}}}$=$\frac{1}{\sqrt{2}}$=$\frac{\sqrt{2}}{2}$.
故选C.

点评 本题考查圆锥曲线的共同特征,解题的关键是运用椭圆和双曲线的定义得到两个曲线的参数之间的关系,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.已知椭圆E:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的焦距为2,A是E的右顶点,P、Q是E上关于原点对称的两点,且直线PA的斜率与直线QA的斜率之积为-$\frac{3}{4}$.
(Ⅰ)求E的方程;
(Ⅱ)过E的右焦点作直线l与E交于M、N两点,直线MA、NA与直线x=3分别交于C、D两点,记△ACD与△AMN的面积分别为S1、S2,且S1•S2=$\frac{18}{7}$,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知函数f(x)的定义域为R,f(0)=3,且函数f(x-1)为奇函数,f(x+3)为偶函数,则f(2014)+f(2015)=-3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.某几何体的三视图如图所示,则该几何体的表面积为(  )
A.16B.(10+$\sqrt{5}$)πC.4+(5+$\sqrt{5})π$πD.6+(5+$\sqrt{5})$π

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.某学校对学生进行三项身体素质测试,每项测试的成绩有3分、2分、1分,若各项成绩均不小于2分切三项测试分数之和不小于7分的学生,则其身体素质等级记为优秀;若三项测试分数之和小于6分,则该学生身体素质等级记为不合格,随机抽取10名学生的成绩记录如下表:
 学生编号 a1 a2 a3 a4 a5 a6 a7 a8 a9 a10
 三项成绩 2,1,2 1,2,2 2,3,2 3,1,1 3,2,2 2,3,1 3,3,31,1,1  3,3,1 2,2,2
(1)利用上表提供的数据估算该学校学生身体素质的优秀率;
(2)从表中身体素质等级记为不合格的学生中任意抽取2人组成小组加强锻炼,求这2人三项测试总分相同的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知函数f(x)=log2(x2+a),则f(x)的定义域为R的充要条件是a>0,f(x)的值域为R的充要条件是a≤0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.若cos2t=-${∫}_{0}^{t}$cosxdx,其中t∈(0,π),则t的值为$\frac{π}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知集合Mn={n∈N*|S=$\sum_{i=1}^{n}$|i2n-1…i2n|)(其中i1,i2,…,i2n为1,2,…,2n的一个排列),记集合Mn中的元素个数为${d}_{{M}_{n}}$,例如,当n=1时,M1={1},${d}_{{M}_{1}}$=1,当n=2时,M2={2,4},${d}_{{M}_{2}}$=2;当n=3时,M3={3,5,7,9},${d}_{{M}_{3}}$=4.
(1)M4={4,6,8,10,12,14,16};
(2)归纳可得${d}_{{M}_{n}}$=$\frac{{n}^{2}-n+2}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.证明:xln(x+$\sqrt{1+{x}^{2}}$)>$\sqrt{1+{x}^{2}}$-1(x>0)

查看答案和解析>>

同步练习册答案