精英家教网 > 高中数学 > 题目详情
19.在数列{an}中,a1=1,an=1+$\frac{1}{{a}_{n-1}}$(n≥2),则a5=$\frac{8}{5}$.

分析 利用数列的递推关系式,逐步求解即可.

解答 解:在数列{an}中,a1=1,an=1+$\frac{1}{{a}_{n-1}}$(n≥2),
可得a2=1+1=2,
a3=1+$\frac{1}{2}$=$\frac{3}{2}$,
a4=1+$\frac{2}{3}$=$\frac{5}{3}$,
a5=1+$\frac{3}{5}$=$\frac{8}{5}$,
故答案为:$\frac{8}{5}$.

点评 本题考查数列的递推关系式的应用,数列项的求法,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.在锐角△ABC中,角A,B所对的边分别为a,b,若$2b•sinA=\sqrt{2}a$,则角B等于(  )
A.$\frac{π}{3}$B.$\frac{π}{4}$C.$\frac{π}{6}$D.$\frac{5π}{12}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=ax2-(a+3)x-a.
(1)当a=1时,求函数y=f(x)的单调递增区间;
(2)若对任意x1,x2∈(0,+∞),(x1-x2)(f(x1)-f(x2))<0恒成立,求实数a的取值范围;
(3)当a>0时,若y=f(x)在区间[0,2]上的最小值为-5,求实数a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.观察下列各等式:$\frac{5}{5-4}$+$\frac{3}{3-4}$=2,$\frac{2}{2-4}$+$\frac{6}{6-4}$=2,$\frac{7}{7-4}$+$\frac{1}{1-4}$=2,$\frac{10}{10-4}$+$\frac{-2}{-2-4}$=2,依照以上各式成立的规律,得到一般性的等式为(  )
A.$\frac{n}{n-4}$+$\frac{8-n}{8-n-4}$=2B.$\frac{n+1}{n+1-4}$+$\frac{n+1+5}{n+1-4}$=2
C.$\frac{n}{n-4}$+$\frac{n}{n+4-4}$=2D.$\frac{n+1}{n+1-4}$+$\frac{n+5}{n+5-4}$=2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.如图所示的程序框图的算符源于我国古代的“中国剩余定理”,用N≡n(modm)表示正整数N除以正整数m后的余数为n,例如:7≡1(mod3),执行该程序框图,则输出的n的值为(  )
A.19B.20C.21D.22

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知F1,F2是双曲线E:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1的左,右焦点,点M在E上,MF1与x轴垂直,sin∠MF2F1=$\frac{1}{3}$,则E的离心率为(  )
A.$\sqrt{2}$B.$\frac{3}{2}$C.$\sqrt{3}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.在一次公益活动中,某学校需要安排五名学生去甲乙丙丁四个地点进行活动,每个地点至少安排一个学生且每个学生只能安排一个地点,甲地受地方限制只能安排一人,A同学因离乙地较远而不安排去乙地,则不同的分配方案的种数为(  )
A.96B.120C.132D.240

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.执行如图所示的程序框图,则输出的S值为(  )
A.1009B.-1009C.-1007D.1008

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知数列{an}的前n项和为Sn,且满足12Sn-36=3n2+8n,数列{log3bn}为等差数列,且b1=3,b3=27.
(Ⅰ)求数列{an}与{bn}的通项公式;
(Ⅱ)令cn=(-1)n$({{a_n}-\frac{5}{12}})+{b_n}$,求数列{cn}的前n项和Tn

查看答案和解析>>

同步练习册答案