精英家教网 > 高中数学 > 题目详情
1.已知a=logπ3,b=logπ4,c=log34,则a,b,c的大小关系为(  )
A.a<b<cB.b<a<cC.a<c<bD.c<a<b

分析 利用对数函数的图象及性质进行求解,

解答 解:由题意:a=logπ3<logππ=1
b=logπ4>logππ=1
c=log34>log33=1,
又∵logπ4=$\frac{1}{lo{g}_{4}π}$,log34=$\frac{1}{lo{g}_{4}3}$,
∵log4π>log43,
∴logπ4<log34.
所以logπ3<b=logπ4<log34,即a<b<c.
故选A.

点评 本题考查了对数的性质的运用及计算计较大小.学会利用中间值进行比较.属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.已知数列{an}的前n项和为Sn,且Sn=n2+n.
(I)求数列{an}的通项公式an
(II)数列{bn}满足bn=$\frac{1}{{a}_{n}{a}_{n+1}}$(n∈N*),求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.某影院有50排座位,每排有60个座号,一次报告会坐满了听众,会后留下座号为18的所有听众50人进行座谈,这是运用了(  )
A.抽签法B.随机数表法C.系统抽样D.放回抽样

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.若非零函数f(x)对任意实数a,b,均有f(a+b)=f(a)•f(b),且当x<0时,f(x)>1;
(1)求f(0)的值;
(2)求证:①任意x∈R,f(x)>0;  ②f(x)为减函数;
(3)当f(1)=$\frac{1}{2}$时,解不等式f(x2+x-3)•f(5-x2)≤$\frac{1}{4}$;
(4)若f(1)=$\frac{1}{2}$,求f(x)在[-4,4]上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.设函数f(x)=x3+ax2-9x-1(a<0),若曲线y=f(x)的斜率最小的切线与直线12x+y-6=0平行,则a的值为-3.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.在△ABC中,内角A、B、C的对边长分别为a、b、c,已知a2-c2=3b,且sinAcosC=2cosAsinC,则b=9.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.设函数f(x)=-a2x2+2a2x+2(a∈R),若f(x)>0在x∈(-2,2)上恒成立,则a的取值范围是(  )
A.-$\frac{1}{12}<a≤\frac{1}{2}$B.$a≤-\frac{1}{12}$或$a>\frac{1}{2}$C.-4<a≤2D.$-\frac{1}{2}≤a≤\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知函数f(x)=(x-1)[x2+(a+2)x+a-b-2]有3个零点
(1)a,b满足的关系式是a2+4b+12>0且2a-b+1≠0,
(2)若3个零点中其中2个可以作为椭圆和双曲线的离心率,则a2+b2的取值范围是(34,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数$y=\sqrt{{{log}_2}(x-1)}$的定义域为A,函数y=($\frac{1}{2}$)x(-2≤x≤0)的值域为B.
(1)求A∩B;
(2)若C={y|y≤a-1},且B⊆C,求a的取值范围.

查看答案和解析>>

同步练习册答案