精英家教网 > 高中数学 > 题目详情
在锐角△AB C中,角A、B、C所对的边分别为a,b,c,且a,b,c成等比数列.已知.sinA=2sinC
(1)求cosB的值;     
(2)若b=
3
,求△ABC的面积.
考点:正弦定理,余弦定理
专题:解三角形
分析:(1)由a,b,c成等比数列,利用等比数列的性质列出关系式,将c=2a代入表示出b,利用余弦定理表示出cosB,将三边长代入即可求出cosB的值.
(2)由条件求得ac=3.由cosB=
3
4
,可得sinB的值,再根据△ABC的面积为
1
2
ac•sinB 计算求得结果.
解答: 解:(1)(Ⅱ)∵a,b,c成等比数列,∴b2=ac,
将c=2a代入得:b2=2a2,即b=
2
a,
∴由余弦定理得:cosB=
a2+c2-b2
2ac
=
a2+4a2-2a2
4a2
=
3
4

 (2)若b=
3
,则由b2=ac,可得ac=3.由cosB=
3
4
,可得sinB=
7
4

∴△ABC的面积为
1
2
ac•sinB=
3
7
8
点评:此题考查了余弦定理,等比数列的性质,熟练掌握余弦定理是解本题的关键,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知椭圆C1
x2
4
+
y2
3
=1,其左准线为l1,右准线为l2,抛物线C2以坐标原点O为顶点,l2为准线,C2交l1于A,B两点.
(1)求抛物线C2的标准方程;
(2)求线段AB的长度.

查看答案和解析>>

科目:高中数学 来源: 题型:

一个几何体的三视图如图所示,则这个几何体的体积为(  )
A、
8
3
π
9
B、
16
3
π
9
C、
16
3
π
9
+2
D、
8
3
π
9
-2

查看答案和解析>>

科目:高中数学 来源: 题型:

建一容积为2000米3的底面为正方形的长方体形无盖储水池,池底造价为100元/米2,池壁造价为200元/米2,则底面边长为多少时总造价最低?最低造价为多少万元?

查看答案和解析>>

科目:高中数学 来源: 题型:

已知命题p:“?x∈[1,2],x2-a≥0”,命题q:“?x∈R,x2+2ax+2-a=0”.若命题“p且q”是真命题,则实数a的取值范围为(  )
A、-2≤a≤1
B、a≤-2或1≤a≤2
C、a≥1
D、a≤-2或 a=1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知|
OA
|=|
OB
|=1,且∠AOB=60°,则|
OA
+
OB
|=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

对正整数n,有抛物线y2=2(2n-1)x,过P(2n,0)任作直线l交抛物线于An,Bn两点,设数列{an}中,a1=-4,且an=
OAn
OBn
n-1
(其中n>1,n∈N),则数列{an}的前n项和Tn=(  )
A、4n
B、-4n
C、2n(n+1)
D、-2n(n+1)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知:函数f(
x
)
的定义域为[0,4],则函数g(x)=f(x+2)的定义域为(  )
A、[0,2]B、[-2,0]
C、[2,4]D、R

查看答案和解析>>

科目:高中数学 来源: 题型:

已知m,k∈Z,且方程mx2-kx+2=0在(0,1)上有两个不同的实数根,则m+k的最小值为
 

查看答案和解析>>

同步练习册答案