精英家教网 > 高中数学 > 题目详情
9.$\frac{1}{2}$-sin215°的值是(  )
A.$\frac{\sqrt{6}}{4}$B.$\frac{\sqrt{6}-\sqrt{2}}{4}$C.$\frac{\sqrt{3}}{2}$D.$\frac{\sqrt{3}}{4}$

分析 由条件利用半角公式,求得所给式子的值.

解答 解:$\frac{1}{2}$-sin215°=$\frac{1}{2}$-$\frac{1-cos30°}{2}$=$\frac{1}{2}$cos30°=$\frac{\sqrt{3}}{4}$,
故选:D.

点评 本题主要考查半角公式的应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

19.若无穷等比数列{an}的前n项和为Sn,首项为1,公比为a-1.5,且$\lim_{n→∞}{S_n}$=a,则a=2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.函数f(x)=lnx-f′(1)x2+5x-4,则f(1)=-1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.数列-1,a,b,c,-9成等比数列,则实数b的值为(  )
A.±3B.3C.-3D.以上都不对

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.设O为锐角△ABC的外心(三角形外接圆的圆心),$\overrightarrow{AO}$=$\frac{1}{5}$$\overrightarrow{AB}$+$\frac{2}{5}$$\overrightarrow{AC}$,则cos∠BAC等于(  )
A.$\frac{\sqrt{6}}{6}$B.$\frac{\sqrt{3}}{3}$C.$\frac{\sqrt{6}}{3}$D.$\frac{\sqrt{6}}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.设f(x)=$\left\{\begin{array}{l}{lo{g}_{\frac{1}{2}}(x+1),x≥0}\\{lo{g}_{2}(-x),x<0}\\{\;}\end{array}\right.$,若f(a)>f(-a),则实数a的取值范围是(  )
A.(-∞,$\frac{1-\sqrt{5}}{2}$)∪(0,$\frac{\sqrt{5}-1}{2}$)B.($\frac{1-\sqrt{5}}{2}$,0)∪($\frac{\sqrt{5}-1}{2}$,+∞)C.(-∞,$\frac{1-\sqrt{5}}{2}$)∪(0,$\frac{1+\sqrt{5}}{2}$)D.($\frac{1-\sqrt{5}}{2}$,0)∪($\frac{1+\sqrt{5}}{2}$,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.求下列不等式的解集:
(1)|2x-1|≥3;
(2)|2x-1|≤5;
(3)3≤|2x-1|≤5.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.在(-π,π)内使sinx>cosx成立的x的取值范围是(  )
A.($\frac{π}{4}$,π)∪(-$\frac{π}{2}$,-$\frac{π}{4}$)B.($\frac{π}{4}$,π)C.($\frac{π}{4}$,π)∪(-π,-$\frac{3π}{4}$)D.(-$\frac{3π}{4}$,π)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.过点A(3,2),B(4,3)的直线方程是(  )
A.x+y+1=0B.x+y-1=0C.x-y+1=0D.x-y-1=0

查看答案和解析>>

同步练习册答案