精英家教网 > 高中数学 > 题目详情
13.如图所示的四个函数图象,在区间(-∞,0)内,方程fi(x)=0(i=1,2,3,4)有实数解的是(  )
A.B.C.D.

分析 若在区间(-∞,0)内,方程fi(x)=0(i=1,2,3,4)有实数解,则函数图象与x轴负半轴有交点,进而得到答案.

解答 解:若在区间(-∞,0)内,方程fi(x)=0(i=1,2,3,4)有实数解,
则函数图象与x轴负半轴有交点,
故选:B

点评 本题考查的知识点是函数的图象,方程的根与函数零点的关系,难度中档.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.已知函数f(x)=2ax3-3ax2+1,g(x)=-$\frac{a}{4}x+\frac{3}{2}$,若对任意给定的m∈[0,2],关于x的方程f(x)=g(m)在区间[0,2]上总存在两个不同的解,则实数a的取值范围是(  )
A.(-∞,-1)B.(1,+∞)C.(-∞,-1)∪(1,+∞)D.[-1,1]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.如图所示的程序框图的算法思路源于我国古代数学中的秦九韶算法,执行该程序框图,则输出的结果S表示的值为(  )
A.a0+a1+a2+a3B.(a0+a1+a2+a3)x3
C.a0+a1x+a2x2+a3x3D.a0x3+a1x2+a2x+a3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.在平面直角坐标系中,不等式组$\left\{\begin{array}{l}x+y-1≥0\\ x-1≤0\\ 3x-y+1≥0\end{array}\right.$所表示的平面区域的面积是2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.设x>0,当x=4时,x+$\frac{16}{x}$有最小值,最小值为8.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.写出$\frac{{2}^{2}-1}{1}$,$\frac{{3}^{2}-2}{3}$,$\frac{{4}^{2}-3}{5}$,$\frac{{5}^{2}-4}{7}$,…的通项公式:$\frac{(n+1)^{2}-n}{2n-1}$..

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知集合A={x|-1<x<3},B={x|0<x<4},则A∪B=(  )
A.(-1,4)B.(-1,0)C.(0,3)D.(3,4)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.下列命题:
①函数y=-$\frac{1}{x}$在其定义域上是增函数;
②函数y=$\frac{x(x+1)}{x+1}$是奇函数;
③函数y=log2(x-1)的图象可由y=log2(x+1)的图象向右平移2个单位得到;
④若($\frac{1}{2}$)a=($\frac{1}{3}$)b<1.则a<b<0
则下列正确命题的序号是③.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.袋中有一个白球,二个红球和二个黑球,五个球的大小,形状,质地完全相同.
(1)若每次从中任取一球,每次取出的球3不再放回去,直到取出白球为止,求取球次数X的分布列和均值.
(2)若从袋中五个球任取一个球,取出的球是红球,就说这次试验成功,求在30次试验中成功次数Y的均值和方差.

查看答案和解析>>

同步练习册答案