精英家教网 > 高中数学 > 题目详情
3.已知α是第二象限角,sinα+cosα=$\frac{\sqrt{3}}{3}$,求sin2α、cos2α.

分析 由题意和平方关系化简已知的式子,由二倍角的正弦公式求出sin2α,由条件和三角函数值的符号缩小α的范围,求出2α的范围,由平方关系和三角函数值的符号求出cos2α.

解答 解:由题意得,sinα+cosα=$\frac{\sqrt{3}}{3}$,
两边平方得,1-2sinαcosα=$\frac{1}{3}$,则sin2α=$\frac{2}{3}$,
因α是第二象限角,sinα+cosα=$\frac{\sqrt{3}}{3}$>0,
所以|sinα|>|cosα|,即$\frac{π}{2}+2kπ<α<\frac{3π}{4}+2kπ(k∈Z)$,
所以$π+4kπ<2α<\frac{3π}{2}+4kπ(k∈Z)$,
则cos2α=-$\sqrt{1-si{n}^{2}2α}$=$-\frac{\sqrt{5}}{3}$,
即sin2α=$\frac{2}{3}$,cos2α=$-\frac{\sqrt{5}}{3}$.

点评 本题考查二倍角的正弦公式,平方关系、三角函数值的符号,以及α范围判断的方法,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的焦距为2$\sqrt{2}$,且过点A($\frac{3}{2}$,-$\frac{1}{2}$).
(1)求椭圆的方程;
(2)已知y=kx+1,是否存在k使得点A关于l的对称点B(不同于点A)在椭圆C上?若存在求出此时直线l的方程,若不存在说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=x-alnx,g(x)=-$\frac{1+a}{x}$(a>0)
(1)若a=l,求f(x)的极值;
(2)若存在x0∈[1,e],使得f(x0)<g(x0)成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.执行如图所示的程序,则输入的i的值为(  )
A.-1B.0C.-1或2D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=x-aex+b(a>0,b∈R).
(1)求f(x)的最大值;
(2)若函数f(x)有两个不同的零点x1,x2,证明:x1+x2<-2lna.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.如图,A,B为抛物线y2=4x上的两点,F为抛物线的焦点且FA⊥FB,C为直线AB上一点且横坐标为-1,连结FC.若|BF|=3|AF|,则tanC=$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.经过A(0,-1),B(2,3)的直线的斜率等于(  )
A.2B.-2C.$\frac{1}{2}$D.$-\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.“开心辞典”中有这样个问题:给出一组数,要你根据规律填出后面的第几个数,现给出一组数:$-\frac{1}{2},\frac{1}{2},-\frac{3}{8},\frac{1}{4},-\frac{5}{32}$,它的第8个数可以是$\frac{1}{32}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.某小卖部为了研究气温对热饮销售的影响,经过统计,得到一个卖出的热饮杯数y与当天气温(平均温度)x/°C的对比表:
 x 0 1 3 4
 y 140 136 129 125
(1)请在图a中画出上表数据的散点图;
(2)请根据上表提供的数据,用最小二乘法求出y关于x的线性回归方程$\widehat{y}$=$\widehat{b}$x+$\widehat{a}$;
(3)如果某天的气温是5°C,试根据(2)求出的线性回归方程预测这天大约可以卖出的热饮杯数.
参考公式:最小二乘法求线性回归方程系数公式:$\widehat{b}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-,{\overline{x}}^{2}}$,$\widehat{a}$=$\overline{y}$-$\widehat{b}$$\overline{x}$.
参考数据:0×140+1×136+3×129+4×125=1023,(140+136+129+125)÷4=132.5.

查看答案和解析>>

同步练习册答案