精英家教网 > 高中数学 > 题目详情
19.在△ABC中,角A,B,C的对边分别是a,b,c,且(a+c)sinB=2csinA.
(1)若sin(A+B)=2sinA,求cosC;
(2)求证:BC、AC、AB边上的高依次成等差数列.

分析 (1)使用正弦定理将角化边,得出a,b,c的关系,利用余弦定理解出cosB;
(2)用三角形的面积S表示出三条高,利用等差中项的性质进行验证即可.

解答 解:(1)∵(a+c)sinB=2csinA.∴ab+bc=2ac.
∵sin(A+B)=sinC=2sinA,∴c=2a.
∴ab+2ab=4a2.∴b=$\frac{4}{3}a$.
∴cosC=$\frac{{a}^{2}+{b}^{2}-{c}^{2}}{2ab}$=$\frac{{a}^{2}+\frac{16}{9}{a}^{2}-4{a}^{2}}{2a•\frac{4}{3}a}$=-$\frac{11}{24}$.
(2)∵(a+c)sinB=2csinA,∴ab+bc=2ac,
∴ab,ac,bc成等差数列,
设ab=m,公差为d,则ac=m+d,bc=m+2d.
设BC、AC、AB边上的高分别为h1,h2,h3,三角形面积为S,
则2S=ah1=bh2=ch3,2S=acsinB=absinC=bcsinA,
∴2S=msinC=(m+d)sinB=(m+2d)sinA.
∴h1=$\frac{2S}{a}$=$\frac{(m+2d)sinA}{a}$,h2=$\frac{2S}{b}$=$\frac{(m+d)sinB}{b}$,h3=$\frac{2S}{c}$=$\frac{msinC}{c}$.
∵$\frac{sinA}{a}=\frac{sinB}{b}=\frac{sinC}{c}$,
∴h1+h3=2h2
∴BC、AC、AB边上的高依次成等差数列.

点评 本题考查了正弦定理,余弦定理,等差关系的判断,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.已知正项等比数列{an}的前n项和为Sn.S3=a2+10a1,a5=9,求
(1)数列{an}的通项公式an
(2)数列{an}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.老师提出一个关于引力波的问题需要甲、乙两位同学回答,已知甲、乙两位同学能回答该问题的概率为0.4和0.5.在这个问题已被解答的条件下,甲乙两位同学都能正确回答该问题的概率为(  )
A.$\frac{1}{5}$B.$\frac{2}{7}$C.$\frac{2}{9}$D.$\frac{9}{10}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.在极坐标系中,点A($\frac{\sqrt{2}}{2}$,$\frac{π}{6}$),B($\frac{\sqrt{2}}{2}$,$\frac{2π}{3}$),则线段AB中点的极坐标为(  )
A.($\frac{1}{2}$,$\frac{5π}{12}$)B.(1,$\frac{5π}{12}$)C.($\frac{\sqrt{2}}{2}$,$\frac{5π}{12}$)D.($\frac{\sqrt{2}}{2}$,$\frac{π}{3}$)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知数列an:$\frac{1}{1}$,$\frac{2}{1}$,$\frac{1}{2}$,$\frac{3}{1}$,$\frac{2}{2}$,$\frac{1}{3}$,$\frac{4}{1}$,$\frac{3}{2}$,$\frac{2}{3}$,$\frac{1}{4}$,…,依它的前10项的规律知a2106应为(  )
A.$\frac{3}{61}$B.$\frac{2}{61}$C.$\frac{1}{63}$D.$\frac{1}{64}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.在△ABC中,A=$\frac{π}{3}$,a=$\sqrt{3}$,则BC边上的中线AM长的取值范围是($\frac{\sqrt{3}}{2}$,$\frac{3}{2}$].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知数列{an}的前n项和为Sn,a1=$\frac{1}{2}$,Sn=2an+1-1(n∈N*).
(1)求数列{an}的通项公式;
(2)记bn=$\frac{n+1}{{a}_{n}}$(n∈N+),求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知公比小于1的等比数列{an}的前n项和为Sn,a1=$\frac{2}{3}$且13a2=3S3(n∈N*).
(1)求数列{an}的通项公式;
(2)设bn=nan,求数列{bn}的前项n和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.(改编)已知f(x)=kx2-4x+k-3.
(1)若f(x)≤0恒成立,求实数k的取值范围;
(2)若不等式f(x)≤0的解集为空集,求实数k的取值范围.

查看答案和解析>>

同步练习册答案