精英家教网 > 高中数学 > 题目详情
已知函数f(x)=ax3+(2a-1)x2+1,当x=-1时,函数f(x)有极值.
(I)求实数a的值;
(II)求函数f(x)在在[-1,1]的最大值和最小值.
分析:(I)先求出函数的导函数,然后根据当x=-1时,函数f(x)有极值,则f'(-1)=0建立等式,解之即可;
(II)根据极值与最值的求解方法,将f(x)的各极值与其端点的函数值比较,其中最大的一个就是最大值,最小的一个就是最小值.
解答:解:(I)∵f′(x)=3ax2+2(2a-1)x…(2分)
∴f′(-1)=3a-2(2a-1)=0,…(3分)
∴a=2.…(4分)
(II)函数f(x)=2x3+3x2+1,…(5分)
得f′(x)=6x2+6x,…(6分)
令f′(x)=0,即6x2+6x=0,解得x1=0,x2=-1;…(7分)
 f(-1)=0  f(0)=1,f(1)=6                 …(9分)
∴f(x)在[-1,1]的最大值为f(1)=6,最小值f(0)=1.
点评:本题主要考查函数极值点与其导函数之间的关系,以及利用导数求闭区间上函数的最值,导数是高等数学下放到高中,是高考的热点问题,每年必考要给予重视.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
a-x2
x
+lnx  (a∈R , x∈[
1
2
 , 2])

(1)当a∈[-2,
1
4
)
时,求f(x)的最大值;
(2)设g(x)=[f(x)-lnx]•x2,k是g(x)图象上不同两点的连线的斜率,否存在实数a,使得k≤1恒成立?若存在,求a的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•海淀区二模)已知函数f(x)=a-2x的图象过原点,则不等式f(x)>
34
的解集为
(-∞,-2)
(-∞,-2)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a|x|的图象经过点(1,3),解不等式f(
2x
)>3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a•2x+b•3x,其中常数a,b满足a•b≠0
(1)若a•b>0,判断函数f(x)的单调性;
(2)若a=-3b,求f(x+1)>f(x)时的x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a-2|x|+1(a≠0),定义函数F(x)=
f(x)   ,  x>0
-f(x) ,    x<0
 给出下列命题:①F(x)=|f(x)|; ②函数F(x)是奇函数;③当a<0时,若mn<0,m+n>0,总有F(m)+F(n)<0成立,其中所有正确命题的序号是
 

查看答案和解析>>

同步练习册答案