精英家教网 > 高中数学 > 题目详情
2.甲、乙两人约定晚6点到晚7点之间在某处见面,并约定甲若早到应等乙半小时,而乙还有其他安排,若乙早到则不需等待,则甲、乙两人能见面的概率(  )
A.$\frac{3}{8}$B.$\frac{3}{4}$C.$\frac{3}{5}$D.$\frac{4}{5}$

分析 由题意知本题是一个几何概型,试验包含的所有事件是Ω={(x,y)|0≤x≤1,0≤y≤1},写出满足条件的事件是A={(x,y)|0≤x≤1,0≤y≤1,y-x<$\frac{1}{2}$或y<x},算出事件对应的集合表示的面积,根据几何概型概率公式得到结果

解答 解:由题意知本题是一个几何概型,设甲到的时间为x,乙到的时间为y,
则试验包含的所有事件是Ω={(x,y)|0≤x≤1,0≤y≤1},
事件对应的集合表示的面积是s=1,
满足条件的事件是A={(x,y)|0≤x≤1,0≤y≤1,y-x<$\frac{1}{2}$或y>x},
则B(0,$\frac{1}{2}$),D($\frac{1}{2}$,1),C(0,1),
则事件A对应的集合表示的面积是1-$\frac{1}{2}$×$\frac{1}{2}$×$\frac{1}{2}$+$\frac{1}{2}$×1×1=$\frac{3}{8}$,根据几何概型概率公式得到P=$\frac{\frac{3}{8}}{1}=\frac{3}{8}$
所以甲、乙两人能见面的概率是1-$\frac{5}{8}=\frac{3}{8}$;
故选A.

点评 本题主要考查几何概型的概率计算,对于这样的问题,一般要通过把试验发生包含的事件所对应的区域求出,根据集合对应的图形面积,用面积的比值得到结果

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

12.直线l过抛物线C:y2=2px(p>0)的焦点F,与抛物线C交于A、B两点,与其准线交于点D,若|AF|=6,$\overrightarrow{DB}=2\overrightarrow{BF}$,则p=3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.若x,y满足约束条件$\left\{\begin{array}{l}{x+y≤0}\\{x-y≤0}\\{{x}^{2}+{y}^{2}≤4}\end{array}\right.$,则z=$\frac{y-2}{x+3}$的最小值为(  )
A.-2B.-$\frac{2}{3}$C.-$\frac{12}{5}$D.$\frac{\sqrt{2}-4}{7}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.定义:若存在实数x1∈[-2,-1],x2∈[a,32]使2${\;}^{-{x}_{1}}$=log2x2成立,则称a为指对实数,那么在a∈[-20,20]上成为指对实数的概率是$\frac{9}{10}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.在平面直角坐标系中,不等式组$\left\{\begin{array}{l}{x+y≤0}\\{x-y≤0}\\{{x}^{2}+{y}^{2}≤{r}^{2}}\end{array}\right.$(r为常数)表示的平面区域的面积为π,若x,y满足上述约束条件,则z=$\frac{x+y+1}{x+3}$的最小值为(  )
A.-1B.-$\frac{5\sqrt{2}+1}{7}$C.$\frac{1}{3}$D.-$\frac{7}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.定义在R上的函数y=f(x),当x∈[0,2]时,f(x)=4(1-|x-1|),且对任意实数x∈[2n-2,2n+1-2](n∈N*,n≥2),都有f(x)=$\frac{1}{2}$f($\frac{x}{2}$-1).若g(x)=f(x)-logax有且仅有3个零点,则实数a的取值范围是(  )
A.[2,10]B.[$\sqrt{2}$,$\sqrt{10}$]C.(2,10)D.[2,10)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.设a是一个各位数字都不是0且没有重复数字的三位数,将组成a的3个数字按从小到大排成的三位数记为I(a),按从大到小排成的三位数记为D(a),(例如a=746,
则I(a)=467,D(a)=764)阅读如右图所示的程序框图,运行相应的程序,任意输入一个a,输出的结果b=495.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知向量$\overrightarrow{a}$=(sinx,mcosx),$\overrightarrow{b}$=(3,-1).
(1)若$\overrightarrow{a}$∥$\overrightarrow{b}$,且m=1,求2sin2x-3cos2x的值;
(2)若函数f(x)=$\overrightarrow{a}$•$\overrightarrow{b}$的图象关于直线x=$\frac{2π}{3}$对称,求函数f(2x)在[$\frac{π}{8}$,$\frac{2π}{3}$]上的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=|x+1|+|2x-4|.
(Ⅰ)解关于x的不等式f(x)<9;
(Ⅱ)若直线y=m与函数y=f(x)的图象围成一个三角形,求实数m的取值范围,并求围成的三角形面积的最大值.

查看答案和解析>>

同步练习册答案