精英家教网 > 高中数学 > 题目详情
18.数列{bn}的前n项和为Sn,且对任意正整数n,都有${S_n}=\frac{n(n+1)}{2}$;
(1)试证明数列{bn}是等差数列,并求其通项公式;
(2)如果等比数列{an}共有2017项,其首项与公比均为2,在数列{an}的每相邻两项ai与ai+1之间插入i个(-1)ibi(i∈N*)后,得到一个新数列{cn},求数列{cn}中所有项的和;
(3)如果存在n∈N*,使不等式$(n+1)({b_n}+\frac{8}{b_n})≤(n+1)λ≤{b_{n+1}}+\frac{20}{{{b_{n+1}}}}$成立,若存在,求实数λ的范围,若不存在,请说明理由.

分析 (1)n=1时,b1=1;n≥2时,bn=Sn-Sn-1=n,即可证明.
(2)通过题意,易得数列{an}的通项公式为an=2n,
当m=2k-1(k≥2,k∈N*)时,数列{cn}共有(2k-1)+1+2+…+(2k-2)=k(2k-1)项,
其所有项的和为Sk(2k-1)=(2+22+…+22k-1)+[-1+22-32+42-…-(2k-3)2+(2k-2)2]=$\frac{1}{2}$m(m-1)+2m+1-2.取m=2017时,可得数列{cn}中所有项的和.
(3)不等式$(n+1)({b_n}+\frac{8}{b_n})≤(n+1)λ≤{b_{n+1}}+\frac{20}{{{b_{n+1}}}}$,即不等式(n+1)$(n+\frac{8}{n})$≤(n+1)λ≤$n+1+\frac{20}{n+1}$,化为:f(n)=$n+\frac{8}{n}$≤λ≤1+$\frac{20}{(n+1)^{2}}$=g(n).通过验证:n=1,2,3时不等式不成立.n≥4时,f(n)≥f(n)=6,g(n)<6.即可得出结论.

解答 (1)证明:n=1时,b1=1;n≥2时,bn=Sn-Sn-1=$\frac{n(n+1)}{2}$-$\frac{n(n-1)}{2}$=n.n=1时也成立.
∴bn=n为等差数列,首项与公差都为1.
(2)解:通过题意,易得数列{an}的通项公式为an=2n,
当m=2k-1(k≥2,k∈N*)时,
数列{cn}共有(2k-1)+1+2+…+(2k-2)=k(2k-1)项,
其所有项的和为Sk(2k-1)=(2+22+…+22k-1)+[-1+22-32+42-…-(2k-3)2+(2k-2)2]
=2(22k-1-1)+[3+7+…+(4k-5)]
=22k-2+(2k-1)(k-1)
=$\frac{1}{2}$m(m-1)+2m+1-2.
∴m=2017时,数列{cn}中所有项的和=22018+2033134.
(3)不等式$(n+1)({b_n}+\frac{8}{b_n})≤(n+1)λ≤{b_{n+1}}+\frac{20}{{{b_{n+1}}}}$,
即不等式(n+1)$(n+\frac{8}{n})$≤(n+1)λ≤$n+1+\frac{20}{n+1}$,
化为:f(n)=$n+\frac{8}{n}$≤λ≤1+$\frac{20}{(n+1)^{2}}$=g(n).
∵f(n)≥f(3)=3+$\frac{8}{3}$,g(n)≤g(1)=6.而n=1,2,3时不等式不成立.
n≥4时,f(n)≥f(n)=6,g(n)<6.因此不存在n∈N*
使不等式$(n+1)({b_n}+\frac{8}{b_n})≤(n+1)λ≤{b_{n+1}}+\frac{20}{{{b_{n+1}}}}$成立.

点评 本题考查了等差数列与等比数列的定义通项公式及其求和公式、作差法、数列的单调性、不等式的解法,考查了推理能力与计算能力,属于难题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.为了解市民在购买食物时看营养说明与性别的关系,现在社会上随机询问了100名市民,得到如下2×2列联表:
(1)是否有95%的把握认为:“性别与读营养说明有关系”,并说明理由;
(2)把频率当概率,若从社会上的男性市民中随机抽取3位,记这3位中读营养说明的人数为ξ,求随机变量ξ的分布列和数学期望E(ξ).
男性女性总计
读营养说明402060
不读营养说明202040
总计6040100
参考公式和数据:${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$
P(K2≥k0
 
0.100.0500.0250.010
k0
 
2.7063.8415.0246.635

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.设f(x)=log2(2+|x|)-$\frac{1}{2+{x}^{2}}$,则使得f(x-1)>f(2x)成立的x取值范围是(-1,$\frac{1}{3}$).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.点(1,0)到双曲线$\frac{x^2}{4}-{y^2}=1$的渐近线的距离是$\frac{\sqrt{5}}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知x、y∈R,且x>y>0,则(  )
A.$\frac{1}{x}-\frac{1}{y}>0$B.${(\frac{1}{2})^x}-{(\frac{1}{2})^y}<0$C.log2x+log2y>0D.sinx-siny>0

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.(1+2x)6展开式中x3项的系数为160(用数字作答)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.若a、b为实数,则“a<1”是“$\frac{1}{a}>1$”的(  )条件.
A.充要B.充分不必要
C.必要不充分D.既不充分也不必要

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.设数列{an}的前n项和为${S_n}(n∈{N^*})$,若a1=1,an+1=2Sn+1,则S4=40.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知函数$f(x)=\frac{{{x^2}-2x}}{x-2},g(x)=\sqrt{1+x}+\sqrt{1-x}$,下列判断正确的是(  )
A.函数f(x)是奇函数,函数g(x)是偶函数
B.函数f(x)不是奇函数,函数g(x)是偶函数
C.函数f(x)是奇函数,函数g(x)不是偶函数
D.函数f(x)不是奇函数,函数g(x)不是偶函数

查看答案和解析>>

同步练习册答案