精英家教网 > 高中数学 > 题目详情
14.在△ABC中,AB=8$\sqrt{6}$,B=45°,C=60°,求AC,BC.

分析 利用正弦定理求出AC,BC,即可得出答案.

解答 解:在△ABC中,AB=8$\sqrt{6}$,B=45°,C=60°,
C=60°,B=45°,A=75°.
由正弦定理可得AC=$\frac{ABsinB}{sinC}$=$\frac{8\sqrt{6}×\frac{\sqrt{2}}{2}}{\frac{\sqrt{3}}{2}}$=16.
∴BC=$\frac{ABsinA}{sinC}$=$\frac{8\sqrt{6}×\frac{\sqrt{6}+\sqrt{2}}{4}}{\frac{\sqrt{3}}{2}}$=8+8$\sqrt{3}$.

点评 本题考查三角形的分解,正弦定理的应用,考查计算能力,难度适中.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.已知不等式$\frac{mx+1}{mx-1}$>0的解为{x|x<-1或x>1},求实数m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.用适当的方法表示下列集合:
(1)绝对值等于5的全体实数组成的集合;
(2)所有正方形组成的集合;
(3)除以3余1的所有整数组成的集合;
(4)构成英文单词mathematics(数学)的全部字母.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.把y=1g$\frac{x}{x+1}$转化为用y的式子表示x的形式.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.将函数y=2x的图象向右平移1个单位就得到函数y=$\frac{{2}^{x}}{2}$的图象.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.设全集为R,集合A={x|0<x≤2},B={x|x<-1或x>1},C={x|x≤a}.
(1)求A∩B,A∪B,(∁RA)∩B;
(2)若∁RA∪C=R,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.在△ABC中,角A、B、C的对边分别是a、b、c满足b2+c2=bc+a2
(1)求角A的大小;
(2)若a=2,△ABC的面积为$\sqrt{3}$,求b,c.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知a2>b>a>1,则logb$\frac{b}{a}$,logba,logab的大小关系是(  )
A.logba<logab<logb$\frac{b}{a}$B.logb$\frac{b}{a}$<logba<logab
C.logba<logb$\frac{b}{a}$<logabD.logab<logb$\frac{b}{a}$<logba

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知不等式a≤x≤a+1成立时,不等式2≤x≤3a+1也成立,求实数a的范围.

查看答案和解析>>

同步练习册答案