精英家教网 > 高中数学 > 题目详情
15.节日前夕,小明的妈妈给小明买了两只可以装电池的发光玩具狗.这两只玩具狗在装满电池后,都会在打开电开关后的4秒内任一时刻等可能发光,然后每只发光玩具狗以4秒为间隔闪亮.那么,当这两只发光玩具狗同时打开电开关后,求它们第一次闪亮的时刻相差不超过2秒的概率.

分析 设两串彩灯第一次闪亮的时刻分别为x,y,由题意可得0≤x≤4,0≤y≤4,要满足条件须|x-y|≤2,作出其对应的平面区域,由几何概型可得答案.

解答 解:设这两只玩具狗第一次闪亮的时刻分别为x,y
由已知:$\left\{\begin{array}{l}0≤x≤4\\ 0≤y≤4\end{array}\right.$
由第一次闪亮时刻相差不超过两秒可得|x-y|≤2…(6分)
现记“这两只玩具狗第一次闪亮的时刻不超过2秒”为事件A.
则$P(A)=1-\frac{{2×\frac{1}{2}×{2^2}}}{4^2}=1-\frac{1}{4}=\frac{3}{4}$…(11分)
答:这两只玩具狗第一次闪亮的时刻不超过2秒的概率为$\frac{3}{4}$.…(12分)

点评 本题考查几何概型,涉及用一元二次方程组表示平面区域,属基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

5.设x∈R,则“-1<x<6”是“2x2-5x-3<0”的(  )
A.充分不必要条件B.必要不充分条件
C.充分必要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知集合M={1,2,3,4},N={(a,b)|a∈M,b∈M},A是集合N中任意一点,O为坐标原点,则直线OA与y=x2+1有交点的概率是(  )
A.$\frac{1}{2}$B.$\frac{1}{3}$C.$\frac{1}{4}$D.$\frac{1}{8}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.设f(x)=|x+1|+|ax+1|
(1)若f(-1)=f(1),f(-$\frac{1}{a}$)=f($\frac{1}{a}$)(a∈R且a≠0),试求a的值;
(2)设a>0,求f(x)的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.如图,已知正三棱柱ABC-A1B1C1的各条棱长都相等,则异面直线AB1和A1C所成的角的余弦值大小为(  )
A.$\frac{1}{4}$B.$-\frac{1}{4}$C.$\frac{1}{2}$D.$-\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知正四棱锥的底面边长是6,侧棱长为5,则该正四棱锥的侧面积为48.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.设0<α<π<β<2π,向量$\overrightarrow{a}$=(1,2),$\overline{b}$=(2cosα,sinα),$\overrightarrow{c}$=(sinβ,2cosβ),$\overrightarrow{d}$=(cosβ,-2sinβ).
(1)若$\overrightarrow{a}$⊥$\overrightarrow{b}$,求α;
(2)若|$\overrightarrow{c}$+$\overrightarrow{d}$|=$\sqrt{3}$,求sinβ+cosβ的值;
(3)若tanαtanβ=4,求证:$\overrightarrow{b}$∥$\overrightarrow{c}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.姐图,在平面直角坐标系中,抛物线y=-(x-2)2+3与y轴交于点A,过点A与x轴平行的直线交抛物线于另一点B,点P是直线AB上方的抛物线上一点,设点P的横坐标为m,则△PAB的面积S的取值范围为0<S≤8.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.“x<1”是“|x|<2”的(  )
A.充分非必要条件B.必要非充分条件
C.充要条件D.非充分非必要条件

查看答案和解析>>

同步练习册答案